cloudroam
2025-04-15 acc5c1281b50c12e4d04c81b899410f6ca2cacac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# -*- coding: utf-8 -*-
import os
import logging
from typing import Dict, Optional, Tuple
 
from flask import Flask, request, jsonify
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification
import torch
from werkzeug.exceptions import BadRequest
from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig, FlightNERConfig, TrainNERConfig
import re
 
# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler('app.log'),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)
 
class ModelManager:
    def __init__(self):
        self.classifier_path = "./models/classifier"
        self.ner_path = "./models/ner_model/best_model"
        self.repayment_path = "./models/repayment_model/best_model"
        self.income_path = "./models/income_model/best_model"
        self.flight_path = "./models/flight_model/best_model"  
        self.train_path = "./models/train_model/best_model"  # 添加火车票模型路径
 
        # 检查模型文件
        self._check_model_files()
        
        # 加载模型
        self.classifier_tokenizer, self.classifier_model = self._load_classifier()
        self.ner_tokenizer, self.ner_model = self._load_ner()
        self.repayment_tokenizer, self.repayment_model = self._load_repayment()
        self.income_tokenizer, self.income_model = self._load_income()
        self.flight_tokenizer, self.flight_model = self._load_flight()
        self.train_tokenizer, self.train_model = self._load_train()  # 加载火车票模型
        
        # 将模型设置为评估模式
        self.classifier_model.eval()
        self.ner_model.eval()
        self.repayment_model.eval()
        self.income_model.eval()
        self.flight_model.eval()
        self.train_model.eval()  # 设置火车票模型为评估模式
        
    def _check_model_files(self):
        """检查模型文件是否存在"""
        if not os.path.exists(self.classifier_path):
            raise RuntimeError("分类模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.ner_path):
            raise RuntimeError("NER模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.repayment_path):
            raise RuntimeError("还款模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.income_path):
            raise RuntimeError("收入模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.flight_path):
            raise RuntimeError("航班模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.train_path):
            raise RuntimeError("火车票模型文件不存在,请先运行训练脚本")
            
    def _load_classifier(self) -> Tuple[BertTokenizer, BertForSequenceClassification]:
        """加载分类模型"""
        try:
            tokenizer = BertTokenizer.from_pretrained(self.classifier_path)
            model = BertForSequenceClassification.from_pretrained(self.classifier_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载分类模型失败: {str(e)}")
            raise
            
    def _load_ner(self) -> Tuple[AutoTokenizer, AutoModelForTokenClassification]:
        """加载NER模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.ner_path)
            model = AutoModelForTokenClassification.from_pretrained(self.ner_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载NER模型失败: {str(e)}")
            raise
            
    def _load_repayment(self):
        """加载还款模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.repayment_path)
            model = AutoModelForTokenClassification.from_pretrained(self.repayment_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载还款模型失败: {str(e)}")
            raise
            
    def _load_income(self):
        """加载收入模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.income_path)
            model = AutoModelForTokenClassification.from_pretrained(self.income_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载收入模型失败: {str(e)}")
            raise
            
    def _load_flight(self):
        """加载航班模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.flight_path)
            model = AutoModelForTokenClassification.from_pretrained(self.flight_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载航班模型失败: {str(e)}")
            raise
 
    def _load_train(self):
        """加载火车票模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.train_path)
            model = AutoModelForTokenClassification.from_pretrained(self.train_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载火车票模型失败: {str(e)}")
            raise
 
    def classify_sms(self, text: str) -> str:
        """对短信进行分类"""
        try:
            inputs = self.classifier_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=64
            )
            with torch.no_grad():
                outputs = self.classifier_model(**inputs)
            pred_id = outputs.logits.argmax().item()
            return self.classifier_model.config.id2label[pred_id]
        except Exception as e:
            logger.error(f"短信分类失败: {str(e)}")
            raise
 
    def extract_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取文本中的实体"""
        try:
            # 初始化结果字典
            result = {
                "post": None,          # 快递公司
                "company": None,       # 寄件公司
                "address": None,       # 地址
                "pickup_code": None,   # 取件码
                "time": None           # 添加时间字段
            }
            
            # 第一阶段:直接从文本中提取取件码
            pickup_code = self.extract_pickup_code_from_text(text)
            if pickup_code:
                result["pickup_code"] = pickup_code
            
            # 第二阶段:使用NER模型提取其他实体
            inputs = self.ner_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=64
            )
            with torch.no_grad():
                outputs = self.ner_model(**inputs)
            
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.ner_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.ner_model.config.id2label[p] for p in predictions[0].numpy()]
 
            # 解析实体
            current_entity = None
            entity_start = None
            for i, (token, tag) in enumerate(zip(tokens, tags)):
                # 跳过取件码实体,因为我们已经单独处理了
                if tag.startswith("B-") and tag[2:] != "PICKUP_CODE":
                    # 保存之前的实体
                    if current_entity and current_entity["type"] != "PICKUP_CODE":
                        key = current_entity["type"].lower()
                        result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                    # 开始新实体
                    current_entity = {"type": tag[2:], "text": token}
                    entity_start = i
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"] and current_entity["type"] != "PICKUP_CODE":
                    current_entity["text"] += token
                elif tag == "O" or tag.startswith("B-"):
                    # 结束当前实体
                    if current_entity and current_entity["type"] != "PICKUP_CODE":
                        key = current_entity["type"].lower()
                        result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
 
            # 处理最后一个实体
            if current_entity and current_entity["type"] != "PICKUP_CODE":
                key = current_entity["type"].lower()
                result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
 
            # 如果第一阶段没有提取到取件码,使用NER模型的结果
            if not result["pickup_code"]:
                # 重新解析一次,只提取取件码
                current_entity = None
                for i, (token, tag) in enumerate(zip(tokens, tags)):
                    if tag.startswith("B-") and tag[2:] == "PICKUP_CODE":
                        current_entity = {"type": tag[2:], "text": token}
                    elif tag.startswith("I-") and current_entity and tag[2:] == "PICKUP_CODE":
                        current_entity["text"] += token
                    elif (tag == "O" or tag.startswith("B-")) and current_entity:
                        result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
                
                # 处理最后一个实体
                if current_entity and current_entity["type"] == "PICKUP_CODE":
                    result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                
                # 后处理:清理和验证取件码
            if result["pickup_code"]:
                # 清理取件码
                code = result["pickup_code"]
                # 移除取件码后的额外文字
                for word in ["的", "来", "到", "取", "件", "码"]:
                    if word in code:
                        code = code[:code.index(word)]
                
                # 只保留字母、数字和连字符
                code = ''.join(c for c in code if c.isalnum() or c == "-")
                
                # 确保格式正确
                parts = code.split("-")
                valid_parts = []
                for part in parts:
                    if part and any(c.isalnum() for c in part):
                        valid_parts.append(part)
                
                if valid_parts:
                    result["pickup_code"] = "-".join(valid_parts)
                else:
                    result["pickup_code"] = None
 
            # 清理公司名称
            if result["company"]:
                company = result["company"]
                invalid_words = ["包裹", "快递", "到"]
                for word in invalid_words:
                    if company.endswith(word):
                        company = company[:-len(word)]
                result["company"] = company.strip()
 
            # 清理地址
            if result["address"]:
                address = result["address"]
                invalid_suffixes = [",请尽快取件", ",询", "请尽快取件"]
                for suffix in invalid_suffixes:
                    if address.endswith(suffix):
                        address = address[:-len(suffix)]
                result["address"] = address.strip()
 
            return result
        except Exception as e:
            logger.error(f"实体提取失败: {str(e)}")
            raise
    
    def extract_pickup_code_from_text(self, text: str) -> Optional[str]:
        """直接从文本提取取件码"""
        # 先尝试直接匹配完整的取件码格式
        pickup_patterns = [
            # 带有上下文的取件码模式(包括字母数字组合)
            r'凭\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})\s*(来|到)?',  # 匹配"凭xx-xx-xxxx"格式
            r'码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})',  # 匹配"码xx-xx-xxxx"格式
            r'提货码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})',  # 匹配"提货码xx-xx-xxxx"格式
            r'取件码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})',  # 匹配"取件码xx-xx-xxxx"格式
            
            # 分组提取模式,对有上下文的取件码
            r'凭\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})\s*(来|到)?',  # 匹配"凭xx-xx-xxxx"
            r'码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})',  # 匹配"码xx-xx-xxxx"
            r'提货码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})',  # 匹配"提货码xx-xx-xxxx"
            r'取件码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})',  # 匹配"取件码xx-xx-xxxx"
            
            # 独立的取件码模式
            r'([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})',  # 匹配独立的xx-xx-xxxx格式,支持字母
            r'(\d{1,2}-\d{1,2}-\d{4,6})',  # 匹配独立的xx-xx-xxxx格式,纯数字
        ]
        
        # 首先尝试整体匹配
        for pattern in pickup_patterns[:4]:  # 前4个是整体匹配模式
            matches = re.findall(pattern, text)
            if matches:
                return matches[0] if isinstance(matches[0], str) else matches[0][0]
        
        # 然后尝试分组匹配
        for pattern in pickup_patterns[4:8]:  # 中间4个是分组匹配模式
            matches = re.findall(pattern, text)
            if matches:
                # 分组匹配,第一部分可以是字母数字组合
                match = matches[0]
                if len(match) >= 3:
                    # 确保第2、3部分是数字
                    if match[1].isdigit() and match[2].isdigit():
                        return f"{match[0]}-{match[1]}-{match[2]}"
        
        # 最后尝试独立模式
        for pattern in pickup_patterns[8:10]:  # 最后2个是独立匹配模式
            matches = re.findall(pattern, text)
            if matches:
                return matches[0]
        
        # 特殊处理包含"取件码"的文本
        code_indicators = ["取件码", "提货码"]
        for indicator in code_indicators:
            if indicator in text:
                idx = text.find(indicator)
                # 检查紧跟着的文本
                search_text = text[idx:idx+35]  # 扩大搜索范围
                # 尝试匹配"取件码A8-1-15"这样的格式
                special_match = re.search(r'[码]\s*([A-Za-z0-9]+[-\s]+\d+[-\s]+\d+)', search_text)
                if special_match:
                    # 规范化格式
                    code = special_match.group(1)
                    # 将空格替换为连字符,确保格式一致
                    code = re.sub(r'\s+', '-', code)
                    # 确保连字符格式正确
                    code = re.sub(r'-+', '-', code)
                    return code
        
        # 特殊处理"凭"后面的数字序列
        if "凭" in text:
            pickup_index = text.find("凭")
            if pickup_index != -1:
                # 在"凭"之后的25个字符内寻找取件码
                search_text = text[pickup_index:pickup_index+35]
                
                # 尝试提取形如"凭A8-1-15"或"凭22-4-1111"的格式
                alpha_num_match = re.search(r'凭\s*([A-Za-z0-9]+)[-\s]+(\d+)[-\s]+(\d+)', search_text)
                if alpha_num_match:
                    return f"{alpha_num_match.group(1)}-{alpha_num_match.group(2)}-{alpha_num_match.group(3)}"
                
                # 提取所有字母数字序列
                parts = re.findall(r'[A-Za-z0-9]+', search_text)
                if len(parts) >= 3:
                    # 组合前三个部分
                    return f"{parts[0]}-{parts[1]}-{parts[2]}"
        
        # 查找形如"A8-1-15"的取件码
        alpha_num_codes = re.findall(r'([A-Za-z]\d+)-(\d+)-(\d+)', text)
        if alpha_num_codes:
            match = alpha_num_codes[0]
            return f"{match[0]}-{match[1]}-{match[2]}"
        
        return None
 
    def extract_repayment_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取还款相关实体"""
        try:
            result = {
                "bank": None,      # 还款主体
                "type": None,      # 还款类型
                "amount": None,    # 还款金额
                "date": None,      # 还款日期
                "number": None,    # 账号尾号
                "min_amount": None # 最低还款金额
            }
            
            inputs = self.repayment_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=RepaymentNERConfig.MAX_LENGTH
            )
            
            with torch.no_grad():
                outputs = self.repayment_model(**inputs)
            
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.repayment_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.repayment_model.config.id2label[p] for p in predictions[0].numpy()]
 
            def clean_amount(amount_text: str, context: str) -> Optional[str]:
                """清理和标准化金额"""
                if not amount_text:
                    return None
                
                # 在上下文中查找完整金额
                amount_index = context.find(amount_text)
                if amount_index != -1:
                    # 扩大搜索范围,查找完整金额
                    search_start = max(0, amount_index - 10)  # 增加向前搜索范围
                    search_end = min(len(context), amount_index + len(amount_text) + 10)
                    search_text = context[search_start:search_end]
                    
                    # 使用更精确的正则表达式查找金额模式
                    amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)')
                    matches = list(amount_pattern.finditer(search_text))
                    
                    # 找到最接近且最长的完整金额
                    best_match = None
                    min_distance = float('inf')
                    max_length = 0
                    target_pos = amount_index - search_start
                    
                    for match in matches:
                        match_pos = match.start()
                        distance = abs(match_pos - target_pos)
                        match_text = match.group(1)
                        
                        # 优先选择更长的匹配,除非距离差异太大
                        if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance):
                            try:
                                # 验证金额是否合理
                                value = float(match_text)
                                if value > 0 and value <= 9999999.99:  # 设置合理的金额范围
                                    best_match = match_text
                                    min_distance = distance
                                    max_length = len(match_text)
                            except ValueError:
                                continue
                
                    if best_match:
                        amount_text = best_match
 
                # 移除货币符号和无效词
                for symbol in RepaymentNERConfig.AMOUNT_CONFIG['currency_symbols']:
                    amount_text = amount_text.replace(symbol, '')
                for word in RepaymentNERConfig.AMOUNT_CONFIG['invalid_words']:
                    amount_text = amount_text.replace(word, '')
                
                # 处理金额中的逗号
                amount_text = amount_text.replace(',', '')
                
                try:
                    # 转换为浮点数
                    value = float(amount_text)
                    
                    # 验证整数位数
                    integer_part = str(int(value))
                    if len(integer_part) <= RepaymentNERConfig.AMOUNT_CONFIG['max_integer_digits']:
                        # 保持原始小数位数
                        if '.' in amount_text:
                            decimal_places = len(amount_text.split('.')[1])
                            return f"{value:.{decimal_places}f}"
                        return str(int(value))
                except ValueError:
                    pass
                return None
 
            # 实体提取
            current_entity = None
            entities = {
                "BANK": [],
                "TYPE": [],
                "PICKUP_CODE": [],
                "DATE": [],
                "NUMBER": [],
                "MIN_CODE": []
            }
 
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entities[current_entity["type"]].append(current_entity["text"])
                    current_entity = {"type": tag[2:], "text": token.replace("##", "")}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token.replace("##", "")
                else:
                    if current_entity:
                        entities[current_entity["type"]].append(current_entity["text"])
                        current_entity = None
 
            if current_entity:
                entities[current_entity["type"]].append(current_entity["text"])
 
            # 处理银行名称
            if entities["BANK"]:
                # 修改银行名称处理逻辑
                bank_parts = []
                seen = set()  # 用于去重
                for bank in entities["BANK"]:
                    bank = bank.strip()
                    if bank and bank not in seen:  # 避免重复
                        bank_parts.append(bank)
                        seen.add(bank)
                bank = "".join(bank_parts)
                if len(bank) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["BANK"]:
                    result["bank"] = bank
 
            # 处理还款类型
            if entities["TYPE"]:
                type_ = "".join(entities["TYPE"]).strip()
                if len(type_) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["TYPE"]:
                    result["type"] = type_
 
            # 处理账号尾号
            if entities["NUMBER"]:
                number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit())
                if number and len(number) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["NUMBER"]:
                    result["number"] = number
 
            # 处理日期
            if entities["DATE"]:
                date = "".join(entities["DATE"])
                date = ''.join(c for c in date if c.isdigit() or c in ['年', '月', '日'])
                if date:
                    result["date"] = date
 
            # 处理金额
            amount_candidates = []
            for amount in entities["PICKUP_CODE"]:
                cleaned_amount = clean_amount(amount, text)
                if cleaned_amount:
                    try:
                        value = float(cleaned_amount)
                        amount_candidates.append((cleaned_amount, value))
                    except ValueError:
                        continue
            
            # 选择最大的有效金额
            if amount_candidates:
                # 按金额大小排序,选择最大的
                result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
 
            # 处理最低还款金额
            for amount in entities["MIN_CODE"]:
                cleaned_amount = clean_amount(amount, text)  # 传入原始文本作为上下文
                if cleaned_amount:
                    result["min_amount"] = cleaned_amount
                    break
 
            return result
        
        except Exception as e:
            logger.error(f"还款实体提取失败: {str(e)}")
            raise
 
    def extract_income_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取收入相关实体"""
        try:
            result = {
                "bank": None,      # 银行名称
                "number": None,    # 账号尾号
                "datetime": None,  # 交易时间
                "amount": None,    # 收入金额
                "balance": None    # 余额
            }
            
            inputs = self.income_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=IncomeNERConfig.MAX_LENGTH
            )
            
            with torch.no_grad():
                outputs = self.income_model(**inputs)
            
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.income_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.income_model.config.id2label[p] for p in predictions[0].numpy()]
 
            def clean_amount(amount_text: str, context: str) -> Optional[str]:
                """清理和标准化金额"""
                if not amount_text:
                    return None
                
                # 在上下文中查找完整金额
                amount_index = context.find(amount_text)
                if amount_index != -1:
                    # 扩大搜索范围,查找完整金额
                    search_start = max(0, amount_index - 10)
                    search_end = min(len(context), amount_index + len(amount_text) + 10)
                    search_text = context[search_start:search_end]
                    
                    # 使用正则表达式查找金额模式
                    import re
                    amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)')
                    matches = list(amount_pattern.finditer(search_text))
                    
                    # 找到最接近且最长的完整金额
                    best_match = None
                    min_distance = float('inf')
                    max_length = 0
                    target_pos = amount_index - search_start
                    
                    for match in matches:
                        match_pos = match.start()
                        distance = abs(match_pos - target_pos)
                        match_text = match.group(1)
                        
                        if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance):
                            try:
                                value = float(match_text)
                                if value > 0:
                                    best_match = match_text
                                    min_distance = distance
                                    max_length = len(match_text)
                            except ValueError:
                                continue
                
                    if best_match:
                        amount_text = best_match
 
                # 移除货币符号和无效词
                for symbol in IncomeNERConfig.AMOUNT_CONFIG['currency_symbols']:
                    amount_text = amount_text.replace(symbol, '')
                for word in IncomeNERConfig.AMOUNT_CONFIG['invalid_words']:
                    amount_text = amount_text.replace(word, '')
                
                # 处理金额中的逗号
                amount_text = amount_text.replace(',', '')
                
                try:
                    value = float(amount_text)
                    if '.' in amount_text:
                        decimal_places = len(amount_text.split('.')[1])
                        return f"{value:.{decimal_places}f}"
                    return str(int(value))
                except ValueError:
                    pass
                return None
 
            # 实体提取
            current_entity = None
            entities = {
                "BANK": [],
                "NUMBER": [],
                "DATATIME": [],
                "PICKUP_CODE": [],
                "BALANCE": []
            }
 
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entities[current_entity["type"]].append(current_entity["text"])
                    current_entity = {"type": tag[2:], "text": token.replace("##", "")}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token.replace("##", "")
                else:
                    if current_entity:
                        entities[current_entity["type"]].append(current_entity["text"])
                        current_entity = None
 
            if current_entity:
                entities[current_entity["type"]].append(current_entity["text"])
 
            # 处理银行名称
            if entities["BANK"]:
                bank_parts = []
                seen = set()
                for bank in entities["BANK"]:
                    bank = bank.strip()
                    if bank and bank not in seen:
                        bank_parts.append(bank)
                        seen.add(bank)
                bank = "".join(bank_parts)
                if len(bank) <= IncomeNERConfig.MAX_ENTITY_LENGTH["BANK"]:
                    result["bank"] = bank
 
            # 处理账号尾号
            if entities["NUMBER"]:
                number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit())
                if number and len(number) <= IncomeNERConfig.MAX_ENTITY_LENGTH["NUMBER"]:
                    result["number"] = number
 
            # 处理交易时间
            if entities["DATATIME"]:
                datetime = "".join(entities["DATATIME"])
                datetime = ''.join(c for c in datetime if c.isdigit() or c in ['年', '月', '日', '时', '分', ':', '-'])
                if datetime:
                    result["datetime"] = datetime
 
            # 处理收入金额
            if entities["PICKUP_CODE"]:
                for amount in entities["PICKUP_CODE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
                        result["amount"] = cleaned_amount
                        break
 
            # 处理余额
            if entities["BALANCE"]:
                for amount in entities["BALANCE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
                        result["balance"] = cleaned_amount
                        break
 
            return result
        
        except Exception as e:
            logger.error(f"收入实体提取失败: {str(e)}")
            raise
 
    def extract_flight_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取航班相关实体"""
        try:
            # 初始化结果字典
            result = {
                "flight": None,           # 航班号
                "company": None,          # 航空公司
                "start": None,            # 出发地
                "end": None,              # 目的地
                "date": None,             # 日期
                "time": None,             # 时间
                "departure_time": None,   # 起飞时间
                "arrival_time": None,     # 到达时间
                "ticket_num": None,       # 机票号码
                "seat": None              # 座位等信息
            }
            
            # 使用NER模型提取实体
            inputs = self.flight_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=FlightNERConfig.MAX_LENGTH
            )
            
            with torch.no_grad():
                outputs = self.flight_model(**inputs)
            
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.flight_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.flight_model.config.id2label[p] for p in predictions[0].numpy()]
 
            # 解析实体
            current_entity = None
            
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                    current_entity = {"type": tag[2:], "text": token}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token
                else:
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
 
            # 处理最后一个实体
            if current_entity:
                entity_type = current_entity["type"].lower()
                result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
 
            # 处理航班号格式
            if result["flight"]:
                flight_no = result["flight"].upper()
                # 清理航班号,只保留字母和数字
                flight_no = ''.join(c for c in flight_no if c.isalnum())
                # 验证航班号格式
                valid_pattern = re.compile(FlightNERConfig.FLIGHT_CONFIG['pattern'])
                if valid_pattern.match(flight_no):
                    result["flight"] = flight_no
                else:
                    # 尝试修复常见错误
                    if len(flight_no) >= FlightNERConfig.FLIGHT_CONFIG['min_length'] and flight_no[:2].isalpha() and flight_no[2:].isdigit():
                        result["flight"] = flight_no
                    else:
                        result["flight"] = None
 
            # 清理日期格式
            if result["date"]:
                date_str = result["date"]
                # 保留数字和常见日期分隔符
                date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
                result["date"] = date_str
 
            # 清理时间格式
            for time_field in ["time", "departure_time", "arrival_time"]:
                if result[time_field]:
                    time_str = result[time_field]
                    # 保留数字和常见时间分隔符
                    time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
                    result[time_field] = time_str
                    
            # 处理机票号码
            if result["ticket_num"]:
                ticket_num = result["ticket_num"]
                # 清理机票号码,只保留字母和数字
                ticket_num = ''.join(c for c in ticket_num if c.isalnum())
                result["ticket_num"] = ticket_num
                
            # 处理座位信息
            if result["seat"]:
                seat_str = result["seat"]
                # 移除可能的额外空格和特殊字符
                seat_str = seat_str.replace(" ", "").strip()
                result["seat"] = seat_str
 
            return result
        except Exception as e:
            logger.error(f"航班实体提取失败: {str(e)}")
            raise
 
    def extract_train_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取火车票相关实体"""
        try:
            # 初始化结果字典
            result = {
                "company": None,         # 12306
                "trips": None,           # 车次
                "start": None,           # 出发站
                "end": None,             # 到达站
                "date": None,            # 日期
                "time": None,            # 时间
                "seat": None,            # 座位等信息
                "name": None             # 用户姓名
            }
            
            # 使用NER模型提取实体
            inputs = self.train_tokenizer(
                text, 
                return_tensors="pt", 
                truncation=True, 
                max_length=TrainNERConfig.MAX_LENGTH
            )
            
            with torch.no_grad():
                outputs = self.train_model(**inputs)
            
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.train_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.train_model.config.id2label[p] for p in predictions[0].numpy()]
 
            # 解析实体
            current_entity = None
            
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                    current_entity = {"type": tag[2:], "text": token}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token
                else:
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
 
            # 处理最后一个实体
            if current_entity:
                entity_type = current_entity["type"].lower()
                result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
 
            # 处理公司名称,通常为12306
            if result["company"]:
                company = result["company"].strip()
                # 如果文本中检测不到公司名称,但包含12306,则默认为12306
                result["company"] = company
            elif "12306" in text:
                result["company"] = "12306"
 
            # 处理车次格式
            if result["trips"]:
                trips_no = result["trips"].upper()
                # 清理车次号,只保留字母和数字
                trips_no = ''.join(c for c in trips_no if c.isalnum() or c in ['/', '-'])
                
                # 验证车次格式
                valid_patterns = [re.compile(pattern) for pattern in TrainNERConfig.TRIPS_CONFIG['patterns']]
                if any(pattern.match(trips_no) for pattern in valid_patterns):
                    result["trips"] = trips_no
                else:
                    # 尝试修复常见错误
                    if len(trips_no) >= TrainNERConfig.TRIPS_CONFIG['min_length'] and any(trips_no.startswith(t) for t in TrainNERConfig.TRIPS_CONFIG['train_types']):
                        result["trips"] = trips_no
                    elif trips_no.isdigit() and 1 <= len(trips_no) <= TrainNERConfig.TRIPS_CONFIG['max_length']:
                        result["trips"] = trips_no
                    else:
                        result["trips"] = None
 
            # 清理日期格式
            if result["date"]:
                date_str = result["date"]
                # 保留数字和常见日期分隔符
                date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
                result["date"] = date_str
 
            # 清理时间格式
            if result["time"]:
                time_str = result["time"]
                # 保留数字和常见时间分隔符
                time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
                result["time"] = time_str
 
            # 处理座位信息
            if result["seat"]:
                seat_str = result["seat"]
                # 移除可能的额外空格和特殊字符
                seat_str = seat_str.replace(" ", "").strip()
                result["seat"] = seat_str
 
            # 处理乘客姓名
            if result["name"]:
                name = result["name"].strip()
                # 移除可能的标点符号
                name = ''.join(c for c in name if c.isalnum() or c in ['*', '·'])
                result["name"] = name
 
            return result
        except Exception as e:
            logger.error(f"火车票实体提取失败: {str(e)}")
            raise
 
# 创建Flask应用
app = Flask(__name__)
model_manager = ModelManager()
 
@app.route("/health", methods=["GET"])
def health_check():
    """健康检查接口"""
    return jsonify({"status": "healthy"})
 
@app.route("/process-sms", methods=["POST"])
def process_sms():
    """处理短信的接口"""
    try:
        # 验证请求数据
        if not request.is_json:
            raise BadRequest("请求必须是JSON格式")
        
        data = request.get_json()
        if "content" not in data:
            raise BadRequest("请求中必须包含'content'字段")
            
        text = data["content"]
        if not isinstance(text, str) or not text.strip():
            raise BadRequest("短信内容不能为空")
 
        # 处理短信
        category = model_manager.classify_sms(text)
        if category == "快递":
            details = model_manager.extract_entities(text)
        elif category == "还款":
            details = model_manager.extract_repayment_entities(text)
        elif category == "收入":
            details = model_manager.extract_income_entities(text)
        elif category == "航班":
            details = model_manager.extract_flight_entities(text)
        elif category == "火车票":  # 添加火车票类别处理
            details = model_manager.extract_train_entities(text)
        else:
            details = {}
        
        # 记录处理结果
        logger.info(f"Successfully processed SMS: {text[:30]}...")
        
        return jsonify({
            "status": "success",
            "data": {
                "category": category,
                "details": details
            }
        })
        
    except BadRequest as e:
        logger.warning(f"Invalid request: {str(e)}")
        return jsonify({
            "status": "error",
            "message": str(e)
        }), 400
        
    except Exception as e:
        logger.error(f"Error processing SMS: {str(e)}")
        return jsonify({
            "status": "error",
            "message": "服务器内部错误"
        }), 500
 
if __name__ == "__main__":
    app.run(host="0.0.0.0", port=5000)