fix
cloudroam
6 天以前 e6fed94443177826cf7497a85e9cdcfc7c43ee21
app.py
@@ -1,13 +1,14 @@
# -*- coding: utf-8 -*-
import os
import logging
import datetime
from typing import Dict, Optional, Tuple
from flask import Flask, request, jsonify
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification
import torch
from werkzeug.exceptions import BadRequest
from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig
from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig, FlightNERConfig, TrainNERConfig
import re
# 配置日志
@@ -27,6 +28,8 @@
        self.ner_path = "./models/ner_model/best_model"
        self.repayment_path = "./models/repayment_model/best_model"
        self.income_path = "./models/income_model/best_model"
        # self.flight_path = "./models/flight_model/best_model"
        # self.train_path = "./models/train_model/best_model"  # 添加火车票模型路径
        # 检查模型文件
        self._check_model_files()
@@ -36,12 +39,16 @@
        self.ner_tokenizer, self.ner_model = self._load_ner()
        self.repayment_tokenizer, self.repayment_model = self._load_repayment()
        self.income_tokenizer, self.income_model = self._load_income()
        # self.flight_tokenizer, self.flight_model = self._load_flight()
        # self.train_tokenizer, self.train_model = self._load_train()  # 加载火车票模型
        
        # 将模型设置为评估模式
        self.classifier_model.eval()
        self.ner_model.eval()
        self.repayment_model.eval()
        self.income_model.eval()
        # self.flight_model.eval()
        # self.train_model.eval()  # 设置火车票模型为评估模式
        
    def _check_model_files(self):
        """检查模型文件是否存在"""
@@ -53,6 +60,10 @@
            raise RuntimeError("还款模型文件不存在,请先运行训练脚本")
        if not os.path.exists(self.income_path):
            raise RuntimeError("收入模型文件不存在,请先运行训练脚本")
        # if not os.path.exists(self.flight_path):
        #     raise RuntimeError("航班模型文件不存在,请先运行训练脚本")
        # if not os.path.exists(self.train_path):
        #     raise RuntimeError("火车票模型文件不存在,请先运行训练脚本")
            
    def _load_classifier(self) -> Tuple[BertTokenizer, BertForSequenceClassification]:
        """加载分类模型"""
@@ -94,8 +105,28 @@
            logger.error(f"加载收入模型失败: {str(e)}")
            raise
            
    def classify_sms(self, text: str) -> str:
        """对短信进行分类"""
    def _load_flight(self):
        """加载航班模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.flight_path)
            model = AutoModelForTokenClassification.from_pretrained(self.flight_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载航班模型失败: {str(e)}")
            raise
    def _load_train(self):
        """加载火车票模型"""
        try:
            tokenizer = AutoTokenizer.from_pretrained(self.train_path)
            model = AutoModelForTokenClassification.from_pretrained(self.train_path)
            return tokenizer, model
        except Exception as e:
            logger.error(f"加载火车票模型失败: {str(e)}")
            raise
    def classify_sms(self, text: str) -> Tuple[str, float]:
        """对短信进行分类,并返回置信度"""
        try:
            inputs = self.classifier_tokenizer(
                text, 
@@ -105,11 +136,243 @@
            )
            with torch.no_grad():
                outputs = self.classifier_model(**inputs)
            pred_id = outputs.logits.argmax().item()
            return self.classifier_model.config.id2label[pred_id]
            # 获取预测标签及其对应的概率
            logits = outputs.logits
            probabilities = torch.softmax(logits, dim=1)
            pred_id = logits.argmax().item()
            confidence = probabilities[0, pred_id].item()  # 获取预测标签的置信度
            return self.classifier_model.config.id2label[pred_id], confidence
        except Exception as e:
            logger.error(f"短信分类失败: {str(e)}")
            raise
    def is_marketing_sms(self, text: str) -> bool:
        """判断是否为营销/广告类短信,采用评分系统"""
        # 特定字符串模式检查:直接匹配明显的营销/通知短信
        marketing_patterns = [
            # 百度类通知
            r"百度智能云.*?尊敬的用户",
            r"百度.*?账户.*?tokens",
            r"AppBuilder.*?账户",
            r"账户有.*?免费额度",
            r".*?免费额度.*?过期",
            r"dwz\.cn\/[A-Za-z0-9]+"
        ]
        # 对特定模式直接判断
        for pattern in marketing_patterns:
            if re.search(pattern, text):
                return True  # 直接认为是营销短信
        # 评分系统:根据短信内容特征进行评分,超过阈值判定为营销短信
        score = 0
        # 强营销特征关键词(高权重)
        strong_marketing_keywords = [
            "有奖", "免费赠送", "抽奖", "中奖", "优惠券", "折扣券", "特价", "秒杀",
            "限时抢购", "促销", "推广", "广告", "代金券", "0元购", "tokens调用量"
        ]
        # 一般营销特征关键词(中等权重)
        general_marketing_keywords = [
            "活动", "优惠", "折扣", "限时", "抢购", "特价", "promotion", "推广",
            "开业", "集点", "集赞", "关注", "公众号", "小程序", "注册有礼", "免费额度"
        ]
        # 弱营销特征关键词(低权重,可能出现在正常短信中)
        weak_marketing_keywords = [
            "尊敬的用户", "尊敬的客户", "您好", "注册", "登录", "账户", "账号",
            "会员", "积分", "权益", "提醒", "即将", "有效期", "过期", "升级",
            "更新", "下载", "APP", "应用", "平台", "网址", "点击", "工单"
        ]
        # 短网址和链接(独立评估,结合其他特征判断)
        url_patterns = [
            "dwz.cn", "t.cn", "短网址", "http://", "https://", "cmbt.cn"
        ]
        # 业务短信特征(用于反向识别,降低误判率)
        # 快递短信特征
        express_keywords = [
            "快递", "包裹", "取件码", "取件", "签收", "派送", "配送", "物流",
            "驿站", "在途", "揽收", "暂存", "已到达", "丰巢", "柜取件", "柜机"
        ]
        # 还款短信特征
        repayment_keywords = [
            "还款", "账单", "信用卡", "借款", "贷款", "逾期", "欠款", "最低还款",
            "应还金额", "到期还款", "还清", "应还", "还款日", "账单¥", "账单¥", "查账还款"
        ]
        # 收入短信特征
        income_keywords = [
            "收入", "转账", "入账", "到账", "支付", "工资", "报销", "余额",
            "成功收款", "收到", "款项"
        ]
        # 航班/火车票特征
        travel_keywords = [
            "航班", "航空", "飞机", "机票", "火车", "铁路", "列车", "车票",
            "出发", "抵达", "起飞", "登机", "候车", "检票"
        ]
        # 额外增加:通知类短信特征(通常不需要处理的短信)
        notification_keywords = [
            "余额不足", "话费不足", "话费余额", "通讯费", "流量用尽", "流量不足",
            "停机", "恢复通话", "自动充值", "交费", "缴费",
            "消费提醒", "交易提醒", "动账", "短信通知", "验证码", "校验码", "安全码"
        ]
        # 运营商标识
        telecom_keywords = [
            "中国电信", "中国移动", "中国联通", "电信", "移动", "联通",
            "携号转网", "号码服务", "通讯服务", "189.cn", "10086", "10010"
        ]
        # 银行和金融机构标识
        bank_keywords = [
            "信用卡", "储蓄卡", "借记卡", "储蓄", "银联",
            "建设银行", "工商银行", "农业银行", "中国银行", "交通银行",
            "招商银行", "浦发银行", "民生银行", "兴业银行", "广发银行",
            "平安银行", "中信银行", "光大银行", "华夏银行", "邮储银行",
            "农商银行", "支付宝", "微信支付", "京东金融", "度小满", "陆金所"
        ]
        # 特殊情况检查:招商银行账单短信,不应被过滤
        if ("招商银行" in text and ("账单" in text or "还款日" in text)) or "cmbt.cn" in text:
            if "还款" in text or "账单" in text or "消费卡" in text:
                return False  # 是还款短信,不过滤
        # 计算评分
        # 首先检查业务短信特征,如果明确是业务短信,直接返回False
        has_express_feature = any(keyword in text for keyword in express_keywords)
        has_repayment_feature = any(keyword in text for keyword in repayment_keywords)
        has_income_feature = any(keyword in text for keyword in income_keywords)
        has_travel_feature = any(keyword in text for keyword in travel_keywords)
        # 检查是否为百度通知
        is_baidu_notification = "百度" in text and "尊敬的用户" in text
        if is_baidu_notification:
            return True  # 百度通知应被过滤
        # 如果短信中包含多个业务关键词(≥2个),很可能是重要的业务短信
        business_score = (has_express_feature + has_repayment_feature +
                         has_income_feature + has_travel_feature)
        if business_score >= 2 and not is_baidu_notification:
            return False  # 多个业务特征同时存在,不太可能是营销短信
        # 检查强营销特征
        for keyword in strong_marketing_keywords:
            if keyword in text:
                score += 3
        # 检查一般营销特征
        for keyword in general_marketing_keywords:
            if keyword in text:
                score += 2
        # 检查弱营销特征
        for keyword in weak_marketing_keywords:
            if keyword in text:
                score += 1
        # 检查URL特征(结合是否存在业务特征)
        has_url = any(pattern in text for pattern in url_patterns)
        # 降低业务特征短信的营销判定分数
        if has_express_feature and not is_baidu_notification:
            score -= 3  # 快递特征明显减分
        if has_repayment_feature:
            score -= 3  # 还款特征明显减分
        if has_income_feature:
            score -= 2  # 收入特征减分
        if has_travel_feature:
            score -= 2  # 旅行特征减分
        # 检查通知类短信特征(但不包括重要的业务短信)
        if not has_express_feature and not has_repayment_feature:  # 确保不是快递和还款短信
            notification_count = sum(1 for keyword in notification_keywords if keyword in text)
            if notification_count >= 2:  # 需要至少2个通知关键词才判定
                score += notification_count  # 增加判定为营销/通知短信的可能性
        # 检查运营商和银行标识(结合其他特征判断)
        has_telecom_feature = any(keyword in text for keyword in telecom_keywords)
        has_bank_feature = any(keyword in text for keyword in bank_keywords)
        # URL的评分处理
        if has_url:
            if (has_express_feature or has_repayment_feature or has_income_feature or has_travel_feature) and not is_baidu_notification:
                # URL在业务短信中可能是正常的追踪链接,不增加评分
                pass
            else:
                # 纯URL且无业务特征,可能是营销短信
                score += 2
        # 特殊情况:运营商余额通知
        if has_telecom_feature and "余额" in text and not has_income_feature:
            score += 2
        # 设置判定阈值
        threshold = 4  # 需要至少4分才判定为营销短信
        return score >= threshold
    def is_notification_sms(self, text: str) -> bool:
        """判断是否为通知类短信(如银行交易通知、运营商提醒等)"""
        # 银行交易通知特征(不包括还款提醒)
        bank_transaction_patterns = [
            r"您尾号\d+的.+消费",
            r"您.+账户消费[\d,.]+元",
            r"交易[\d,.]+元",
            r"支付宝.+消费",
            r"微信支付.+消费",
            r"\d{1,2}月\d{1,2}日\d{1,2}[::]\d{1,2}消费",
            r"银行卡([支付|消费|扣款])"
        ]
        # 排除规则:包含以下关键词的短信不应被判定为通知短信
        business_keywords = [
            # 还款关键词
            "还款", "账单", "应还", "到期还款", "还款日", "最低还款", "账单¥", "账单¥", "查账还款",
            # 快递关键词
            "快递", "包裹", "取件码", "取件", "签收", "派送", "配送",
            # 收入关键词
            "收入", "转账", "入账", "到账", "支付成功", "工资"
        ]
        # 运营商余额通知特征
        telecom_balance_patterns = [
            r"余额[不足|低于][\d,.]+元",
            r"话费[不足|仅剩][\d,.]+元",
            r"流量[不足|即将用尽]",
            r"[电信|移动|联通].+余额",
            r"[停机|停号]提醒",
            r"为了保障您的正常通讯",
        ]
        # 首先检查是否包含业务关键词,有则不应判定为通知短信
        for keyword in business_keywords:
            if keyword in text:
                return False  # 包含业务关键词,不是需要过滤的通知短信
        # 检查银行交易通知模式
        for pattern in bank_transaction_patterns:
            if re.search(pattern, text):
                logger.debug(f"识别到银行交易通知短信:{text[:30]}...")
                return True
        # 检查运营商余额通知模式
        for pattern in telecom_balance_patterns:
            if re.search(pattern, text):
                logger.debug(f"识别到运营商余额通知短信:{text[:30]}...")
                return True
        return False
    def extract_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取文本中的实体"""
@@ -120,7 +383,7 @@
                "company": None,       # 寄件公司
                "address": None,       # 地址
                "pickup_code": None,   # 取件码
                "time": None          # 时间
                "time": None           # 添加时间字段
            }
            
            # 第一阶段:直接从文本中提取取件码
@@ -352,67 +615,60 @@
                if not amount_text:
                    return None
                
                # 尝试直接在上下文中使用正则表达式查找更完整的金额
                # 如果在同一句话里有类似"应还金额5,800元"这样的模式
                amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', context)
                if amount_match:
                    return amount_match.group(1)  # 直接返回匹配到的金额,保留原始格式
                # 尝试查找最低还款金额
                min_amount_match = re.search(r'最低还款([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', context)
                if min_amount_match and "MIN_CODE" in current_entity["type"]:
                    return min_amount_match.group(1)  # 直接返回匹配到的最低还款金额,保留原始格式
                # 在上下文中查找完整金额
                amount_index = context.find(amount_text)
                if amount_index != -1:
                    # 扩大搜索范围,查找完整金额
                    search_start = max(0, amount_index - 10)  # 增加向前搜索范围
                    search_start = max(0, amount_index - 10)
                    search_end = min(len(context), amount_index + len(amount_text) + 10)
                    search_text = context[search_start:search_end]
                    
                    # 使用更精确的正则表达式查找金额模式
                    amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)')
                    # 使用正则表达式查找金额
                    amount_pattern = re.compile(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?')
                    matches = list(amount_pattern.finditer(search_text))
                    
                    # 找到最接近且最长的完整金额
                    best_match = None
                    min_distance = float('inf')
                    max_length = 0
                    target_pos = amount_index - search_start
                    for match in matches:
                        match_pos = match.start()
                        distance = abs(match_pos - target_pos)
                        match_text = match.group(1)
                    if matches:
                        # 选择最接近的匹配结果
                        best_match = None
                        min_distance = float('inf')
                        
                        # 优先选择更长的匹配,除非距离差异太大
                        if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance):
                            try:
                                # 验证金额是否合理
                                value = float(match_text)
                                if value > 0 and value <= 9999999.99:  # 设置合理的金额范围
                                    best_match = match_text
                                    min_distance = distance
                                    max_length = len(match_text)
                            except ValueError:
                                continue
                        for match in matches:
                            distance = abs(match.start() - (amount_index - search_start))
                            if distance < min_distance:
                                min_distance = distance
                                best_match = match.group(1)  # 只取数字部分,保留逗号
                        if best_match:
                            return best_match
                
                    if best_match:
                        amount_text = best_match
                # 如果上述方法都没找到,则保留原始提取结果但验证其有效性
                # 移除货币符号和无效词
                for symbol in RepaymentNERConfig.AMOUNT_CONFIG['currency_symbols']:
                    amount_text = amount_text.replace(symbol, '')
                for word in RepaymentNERConfig.AMOUNT_CONFIG['invalid_words']:
                    amount_text = amount_text.replace(word, '')
                
                # 处理金额中的逗号
                amount_text = amount_text.replace(',', '')
                # 验证金额有效性
                clean_amount = amount_text.replace(',', '')
                try:
                    # 转换为浮点数
                    value = float(amount_text)
                    # 验证整数位数
                    integer_part = str(int(value))
                    if len(integer_part) <= RepaymentNERConfig.AMOUNT_CONFIG['max_integer_digits']:
                        # 保持原始小数位数
                        if '.' in amount_text:
                            decimal_places = len(amount_text.split('.')[1])
                            return f"{value:.{decimal_places}f}"
                        return str(int(value))
                    value = float(clean_amount)
                    if value > 0:
                        # 返回原始格式
                        return amount_text
                except ValueError:
                    pass
                return None
            # 实体提取
@@ -443,12 +699,11 @@
            # 处理银行名称
            if entities["BANK"]:
                # 修改银行名称处理逻辑
                bank_parts = []
                seen = set()  # 用于去重
                seen = set()
                for bank in entities["BANK"]:
                    bank = bank.strip()
                    if bank and bank not in seen:  # 避免重复
                    if bank and bank not in seen:
                        bank_parts.append(bank)
                        seen.add(bank)
                bank = "".join(bank_parts)
@@ -457,7 +712,14 @@
            # 处理还款类型
            if entities["TYPE"]:
                type_ = "".join(entities["TYPE"]).strip()
                type_parts = []
                seen = set()
                for type_ in entities["TYPE"]:
                    type_ = type_.strip()
                    if type_ and type_ not in seen:
                        type_parts.append(type_)
                        seen.add(type_)
                type_ = "".join(type_parts)
                if len(type_) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["TYPE"]:
                    result["type"] = type_
@@ -470,32 +732,85 @@
            # 处理日期
            if entities["DATE"]:
                date = "".join(entities["DATE"])
                date = ''.join(c for c in date if c.isdigit() or c in ['年', '月', '日'])
                date = ''.join(c for c in date if c.isdigit() or c in ['年', '月', '日', '-'])
                if date:
                    result["date"] = date
            # 处理金额
            amount_candidates = []
            for amount in entities["PICKUP_CODE"]:
                cleaned_amount = clean_amount(amount, text)
                if cleaned_amount:
                    try:
                        value = float(cleaned_amount)
                        amount_candidates.append((cleaned_amount, value))
                    except ValueError:
                        continue
            # 尝试匹配带¥符号的账单金额模式
            amount_match = re.search(r'账单¥([\d,]+\.?\d*)', text)
            if not amount_match:
                # 尝试匹配带¥符号的账单金额模式
                amount_match = re.search(r'账单¥([\d,]+\.?\d*)', text)
            if not amount_match:
                # 尝试匹配一般金额模式
                amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text)
            
            # 选择最大的有效金额
            if amount_candidates:
                # 按金额大小排序,选择最大的
                result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
            if amount_match:
                amount = amount_match.group(1)  # 保留原始格式(带逗号)
                # 验证金额有效性
                try:
                    value = float(amount.replace(',', ''))
                    if value > 0:
                        result["amount"] = amount
                except ValueError:
                    pass
            # 如果正则没有匹配到,使用NER结果
            if not result["amount"]:
                amount_candidates = []
                # 从识别的实体中获取
                for amount in entities["PICKUP_CODE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
                        try:
                            value = float(cleaned_amount.replace(',', ''))
                            amount_candidates.append((cleaned_amount, value))
                        except ValueError:
                            continue
                # 如果还是没有找到,尝试从文本中提取
                if not amount_candidates:
                    # 使用多个正则表达式匹配不同格式的金额
                    # 1. 匹配带¥符号格式
                    matches = list(re.finditer(r'¥([\d,]+\.?\d*)', text))
                    # 2. 匹配带¥符号格式
                    matches.extend(list(re.finditer(r'¥([\d,]+\.?\d*)', text)))
                    # 3. 匹配一般金额格式
                    matches.extend(list(re.finditer(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)', text)))
                    for match in matches:
                        amount_text = match.group(1)  # 获取数字部分,保留逗号
                        try:
                            value = float(amount_text.replace(',', ''))
                            amount_candidates.append((amount_text, value))
                        except ValueError:
                            continue
                # 选择最大的有效金额
                if amount_candidates:
                    result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
            # 处理最低还款金额
            for amount in entities["MIN_CODE"]:
                cleaned_amount = clean_amount(amount, text)  # 传入原始文本作为上下文
                if cleaned_amount:
                    result["min_amount"] = cleaned_amount
                    break
            # 先尝试使用正则表达式直接匹配最低还款金额
            min_amount_match = re.search(r'最低还款([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text)
            if min_amount_match:
                min_amount = min_amount_match.group(1)  # 保留原始格式(带逗号)
                # 验证金额有效性
                try:
                    value = float(min_amount.replace(',', ''))
                    if value > 0:
                        result["min_amount"] = min_amount
                except ValueError:
                    pass
            # 如果正则没有匹配到,使用NER结果
            if not result["min_amount"] and entities["MIN_CODE"]:
                for amount in entities["MIN_CODE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
                        result["min_amount"] = cleaned_amount
                        break
            return result
        
@@ -541,9 +856,8 @@
                    search_end = min(len(context), amount_index + len(amount_text) + 10)
                    search_text = context[search_start:search_end]
                    
                    # 使用正则表达式查找金额模式
                    import re
                    amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)')
                    # 使用更精确的正则表达式查找金额模式,支持带逗号的金额
                    amount_pattern = re.compile(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)')
                    matches = list(amount_pattern.finditer(search_text))
                    
                    # 找到最接近且最长的完整金额
@@ -641,15 +955,116 @@
                    result["datetime"] = datetime
            # 处理收入金额
            if entities["PICKUP_CODE"]:
            # 先尝试使用正则表达式直接匹配收入金额,包括"收入金额"格式
            amount_match = re.search(r'收入金额([\d,]+\.?\d*)元', text)
            if not amount_match:
                # 尝试匹配一般收入格式
                amount_match = re.search(r'收入([\d,]+\.?\d*)元', text)
            if amount_match:
                amount = amount_match.group(1)  # 保留原始格式(带逗号)
                # 验证金额有效性
                try:
                    value = float(amount.replace(',', ''))
                    if value > 0:
                        result["amount"] = amount
                except ValueError:
                    pass
            # 如果正则没有匹配到,继续尝试NER结果
            if not result["amount"]:
                amount_candidates = []
                # 首先从识别的实体中获取
                for amount in entities["PICKUP_CODE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
                        result["amount"] = cleaned_amount
                        break
                        try:
                            value = float(cleaned_amount)
                            amount_candidates.append((cleaned_amount, value))
                        except ValueError:
                            continue
                # 如果没有找到有效金额,直接从文本中尝试提取
                if not amount_candidates:
                    # 尝试多种模式匹配金额
                    # 1. 匹配"收入金额xxx元"模式
                    matches = list(re.finditer(r'收入金额([\d,]+\.?\d*)元', text))
                    # 2. 匹配"收入xxx元"模式
                    matches.extend(list(re.finditer(r'收入([\d,]+\.?\d*)元', text)))
                    # 3. 匹配带元结尾的金额
                    matches.extend(list(re.finditer(r'([0-9,]+\.[0-9]+)元', text)))
                    # 4. 匹配普通数字(可能是余额),但排除已识别为余额的金额
                    if "余额" in text:
                        balance_match = re.search(r'余额([\d,]+\.?\d*)元', text)
                        if balance_match:
                            balance_value = balance_match.group(1)
                            # 只匹配不等于余额的金额
                            all_numbers = re.finditer(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)', text)
                            for match in all_numbers:
                                if match.group(1) != balance_value:
                                    matches.append(match)
                    else:
                        matches.extend(list(re.finditer(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)', text)))
                    for match in matches:
                        amount_text = match.group(1)
                        try:
                            value = float(amount_text.replace(',', ''))
                            amount_candidates.append((amount_text, value))
                        except ValueError:
                            continue
                # 从金额候选中排除已识别的余额值
                if result["balance"]:
                    try:
                        balance_value = float(result["balance"].replace(',', ''))
                        amount_candidates = [(text, value) for text, value in amount_candidates if abs(value - balance_value) > 0.01]
                    except ValueError:
                        pass
                # 选择适当的金额作为收入
                if amount_candidates:
                    has_income_amount_keyword = "收入金额" in text
                    if has_income_amount_keyword:
                        # 查找"收入金额"附近的数字
                        idx = text.find("收入金额")
                        if idx != -1:
                            closest_amount = None
                            min_distance = float('inf')
                            for amount_text, value in amount_candidates:
                                # 找到这个数字在原文中的位置
                                amount_idx = text.find(amount_text)
                                if amount_idx != -1:
                                    distance = abs(amount_idx - idx)
                                    if distance < min_distance:
                                        min_distance = distance
                                        closest_amount = amount_text
                            if closest_amount:
                                result["amount"] = closest_amount
                            else:
                                # 如果无法找到最近的金额,使用最大金额策略
                                result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
                    else:
                        # 如果没有"收入金额"关键词,则使用最大金额策略
                        result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
            # 处理余额
            if entities["BALANCE"]:
            # 先尝试使用正则表达式直接匹配余额
            balance_match = re.search(r'余额([\d,]+\.?\d*)元', text)
            if balance_match:
                balance = balance_match.group(1)  # 保留原始格式(带逗号)
                # 验证金额有效性
                try:
                    value = float(balance.replace(',', ''))
                    if value > 0:
                        result["balance"] = balance
                except ValueError:
                    pass
            # 如果正则没有匹配到,使用NER结果
            if not result["balance"] and entities["BALANCE"]:
                for amount in entities["BALANCE"]:
                    cleaned_amount = clean_amount(amount, text)
                    if cleaned_amount:
@@ -662,9 +1077,264 @@
            logger.error(f"收入实体提取失败: {str(e)}")
            raise
    def extract_flight_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取航班相关实体"""
        try:
            # 初始化结果字典
            result = {
                "flight": None,           # 航班号
                "company": None,          # 航空公司
                "start": None,            # 出发地
                "end": None,              # 目的地
                "date": None,             # 日期
                "time": None,             # 时间
                "departure_time": None,   # 起飞时间
                "arrival_time": None,     # 到达时间
                "ticket_num": None,       # 机票号码
                "seat": None              # 座位等信息
            }
            # 使用NER模型提取实体
            inputs = self.flight_tokenizer(
                text,
                return_tensors="pt",
                truncation=True,
                max_length=FlightNERConfig.MAX_LENGTH
            )
            with torch.no_grad():
                outputs = self.flight_model(**inputs)
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.flight_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.flight_model.config.id2label[p] for p in predictions[0].numpy()]
            # 解析实体
            current_entity = None
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                    current_entity = {"type": tag[2:], "text": token}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token
                else:
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
            # 处理最后一个实体
            if current_entity:
                entity_type = current_entity["type"].lower()
                result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
            # 处理航班号格式
            if result["flight"]:
                flight_no = result["flight"].upper()
                # 清理航班号,只保留字母和数字
                flight_no = ''.join(c for c in flight_no if c.isalnum())
                # 验证航班号格式
                valid_pattern = re.compile(FlightNERConfig.FLIGHT_CONFIG['pattern'])
                if valid_pattern.match(flight_no):
                    result["flight"] = flight_no
                else:
                    # 尝试修复常见错误
                    if len(flight_no) >= FlightNERConfig.FLIGHT_CONFIG['min_length'] and flight_no[:2].isalpha() and flight_no[2:].isdigit():
                        result["flight"] = flight_no
                    else:
                        result["flight"] = None
            # 清理日期格式
            if result["date"]:
                date_str = result["date"]
                # 保留数字和常见日期分隔符
                date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
                result["date"] = date_str
            # 清理时间格式
            for time_field in ["time", "departure_time", "arrival_time"]:
                if result[time_field]:
                    time_str = result[time_field]
                    # 保留数字和常见时间分隔符
                    time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
                    result[time_field] = time_str
            # 处理机票号码
            if result["ticket_num"]:
                ticket_num = result["ticket_num"]
                # 清理机票号码,只保留字母和数字
                ticket_num = ''.join(c for c in ticket_num if c.isalnum())
                result["ticket_num"] = ticket_num
            # 处理座位信息
            if result["seat"]:
                seat_str = result["seat"]
                # 移除可能的额外空格和特殊字符
                seat_str = seat_str.replace(" ", "").strip()
                result["seat"] = seat_str
            return result
        except Exception as e:
            logger.error(f"航班实体提取失败: {str(e)}")
            raise
    def extract_train_entities(self, text: str) -> Dict[str, Optional[str]]:
        """提取火车票相关实体"""
        try:
            # 初始化结果字典
            result = {
                "company": None,         # 12306
                "trips": None,           # 车次
                "start": None,           # 出发站
                "end": None,             # 到达站
                "date": None,            # 日期
                "time": None,            # 时间
                "seat": None,            # 座位等信息
                "name": None             # 用户姓名
            }
            # 使用NER模型提取实体
            inputs = self.train_tokenizer(
                text,
                return_tensors="pt",
                truncation=True,
                max_length=TrainNERConfig.MAX_LENGTH
            )
            with torch.no_grad():
                outputs = self.train_model(**inputs)
            predictions = torch.argmax(outputs.logits, dim=2)
            tokens = self.train_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
            tags = [self.train_model.config.id2label[p] for p in predictions[0].numpy()]
            # 解析实体
            current_entity = None
            for token, tag in zip(tokens, tags):
                if tag.startswith("B-"):
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                    current_entity = {"type": tag[2:], "text": token}
                elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
                    current_entity["text"] += token
                else:
                    if current_entity:
                        entity_type = current_entity["type"].lower()
                        result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
                        current_entity = None
            # 处理最后一个实体
            if current_entity:
                entity_type = current_entity["type"].lower()
                result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
            # 处理公司名称,通常为12306
            if result["company"]:
                company = result["company"].strip()
                # 如果文本中检测不到公司名称,但包含12306,则默认为12306
                result["company"] = company
            elif "12306" in text:
                result["company"] = "12306"
            # 处理车次格式
            if result["trips"]:
                trips_no = result["trips"].upper()
                # 清理车次号,只保留字母和数字
                trips_no = ''.join(c for c in trips_no if c.isalnum() or c in ['/', '-'])
                # 验证车次格式
                valid_patterns = [re.compile(pattern) for pattern in TrainNERConfig.TRIPS_CONFIG['patterns']]
                if any(pattern.match(trips_no) for pattern in valid_patterns):
                    result["trips"] = trips_no
                else:
                    # 尝试修复常见错误
                    if len(trips_no) >= TrainNERConfig.TRIPS_CONFIG['min_length'] and any(trips_no.startswith(t) for t in TrainNERConfig.TRIPS_CONFIG['train_types']):
                        result["trips"] = trips_no
                    elif trips_no.isdigit() and 1 <= len(trips_no) <= TrainNERConfig.TRIPS_CONFIG['max_length']:
                        result["trips"] = trips_no
                    else:
                        result["trips"] = None
            # 清理日期格式
            if result["date"]:
                date_str = result["date"]
                # 保留数字和常见日期分隔符
                date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
                result["date"] = date_str
            # 清理时间格式
            if result["time"]:
                time_str = result["time"]
                # 保留数字和常见时间分隔符
                time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
                result["time"] = time_str
            # 处理座位信息
            if result["seat"]:
                seat_str = result["seat"]
                # 移除可能的额外空格和特殊字符
                seat_str = seat_str.replace(" ", "").strip()
                result["seat"] = seat_str
            # 处理乘客姓名
            if result["name"]:
                name = result["name"].strip()
                # 移除可能的标点符号
                name = ''.join(c for c in name if c.isalnum() or c in ['*', '·'])
                result["name"] = name
            return result
        except Exception as e:
            logger.error(f"火车票实体提取失败: {str(e)}")
            raise
# 创建Flask应用
app = Flask(__name__)
model_manager = ModelManager()
# 添加保存短信到文件的函数
def save_sms_to_file(text: str, category: str = None, confidence: float = None) -> bool:
    """
    将短信内容保存到本地文件
    Args:
        text: 短信内容
        category: 分类结果
        confidence: 分类置信度
    Returns:
        bool: 保存成功返回True,否则返回False
    """
    try:
        # 确保日志目录存在
        log_dir = "./sms_logs"
        if not os.path.exists(log_dir):
            os.makedirs(log_dir)
        # 创建基于日期的文件名
        today = datetime.datetime.now().strftime("%Y-%m-%d")
        file_path = os.path.join(log_dir, f"sms_log_{today}.txt")
        # 获取当前时间
        current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        # 准备要写入的内容
        category_info = f"分类: {category}, 置信度: {confidence:.4f}" if category and confidence else "未分类"
        log_content = f"[{current_time}] {category_info}\n{text}\n{'='*50}\n"
        # 以追加模式写入文件
        with open(file_path, 'a', encoding='utf-8') as f:
            f.write(log_content)
        return True
    except Exception as e:
        logger.error(f"保存短信到文件失败: {str(e)}")
        return False
@app.route("/health", methods=["GET"])
def health_check():
@@ -686,20 +1356,138 @@
        text = data["content"]
        if not isinstance(text, str) or not text.strip():
            raise BadRequest("短信内容不能为空")
        # 保存原始短信内容到文件
        save_sms_to_file(text)
        # 特定短信识别逻辑 - 针对百度通知和招商银行账单
        # 识别百度通知
        if "百度智能云" in text and "尊敬的用户" in text and "免费额度" in text:
            logger.info(f"直接识别为百度通知短信: {text[:30]}...")
            category = "其他"
            save_sms_to_file(text, category, 1.0)  # 记录分类结果
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": {}
                }
            })
        # 识别招商银行账单
        if "招商银行" in text and ("账单¥" in text or "账单¥" in text or "还款日" in text):
            logger.info(f"直接识别为招商银行还款短信: {text[:30]}...")
            category = "还款"
            details = model_manager.extract_repayment_entities(text)
            save_sms_to_file(text, category, 1.0)  # 记录分类结果
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": details
                }
            })
        # 处理短信
        category = model_manager.classify_sms(text)
        category, confidence = model_manager.classify_sms(text)
        # 保存短信内容和分类结果
        save_sms_to_file(text, category, confidence)
        # 如果是明确的业务短信类别,直接进入处理流程
        if category in ["快递", "还款", "收入", "航班", "火车票"] and confidence > 0.5:
            # 对百度通知的特殊处理
            if category == "快递" and "百度" in text and "尊敬的用户" in text:
                logger.info(f"纠正百度通知短信的分类: {text[:30]}...")
                category = "其他"
                save_sms_to_file(text, category, confidence)  # 更新分类结果
                return jsonify({
                    "status": "success",
                    "data": {
                        "category": category,
                        "details": {}
                    }
                })
            # 对于高置信度的业务分类,直接进入实体提取
            if category == "快递":
                details = model_manager.extract_entities(text)
            elif category == "还款":
                details = model_manager.extract_repayment_entities(text)
            elif category == "收入":
                details = model_manager.extract_income_entities(text)
            elif category == "航班":
                details = model_manager.extract_flight_entities(text)
            elif category == "火车票":
                details = model_manager.extract_train_entities(text)
            logger.info(f"高置信度业务短信: {text[:30]}..., category: {category}, confidence: {confidence:.4f}")
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": details
                }
            })
        # 检查是否为营销/广告短信
        if model_manager.is_marketing_sms(text):
            # 如果是营销/广告短信,直接归类为"其他"
            logger.info(f"检测到营销/广告短信: {text[:30]}...")
            category = "其他"
            save_sms_to_file(text, category, confidence)  # 更新分类结果
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": {}
                }
            })
        # 检查是否为通知类短信
        if model_manager.is_notification_sms(text):
            # 如果是通知类短信,直接归类为"其他"
            logger.info(f"检测到通知类短信: {text[:30]}...")
            category = "其他"
            save_sms_to_file(text, category, confidence)  # 更新分类结果
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": {}
                }
            })
        # 置信度阈值,低于此阈值的分类结果被视为"其他"
        confidence_threshold = 0.7
        if confidence < confidence_threshold:
            logger.info(f"短信分类置信度低({confidence:.4f}),归类为'其他': {text[:30]}...")
            category = "其他"
            save_sms_to_file(text, category, confidence)  # 更新分类结果
            return jsonify({
                "status": "success",
                "data": {
                    "category": category,
                    "details": {}
                }
            })
        # 根据分类结果调用对应的实体提取函数
        if category == "快递":
            details = model_manager.extract_entities(text)
        elif category == "还款":
            details = model_manager.extract_repayment_entities(text)
        elif category == "收入":
            details = model_manager.extract_income_entities(text)
        elif category == "航班":
            details = model_manager.extract_flight_entities(text)
        elif category == "火车票":
            details = model_manager.extract_train_entities(text)
        else:
            details = {}
        
        # 记录处理结果
        logger.info(f"Successfully processed SMS: {text[:30]}...")
        logger.info(f"Successfully processed SMS: {text[:30]}..., category: {category}, confidence: {confidence:.4f}")
        
        return jsonify({
            "status": "success",
@@ -708,7 +1496,7 @@
                "details": details
            }
        })
        save_sms_to_file
    except BadRequest as e:
        logger.warning(f"Invalid request: {str(e)}")
        return jsonify({