From acc5c1281b50c12e4d04c81b899410f6ca2cacac Mon Sep 17 00:00:00 2001
From: cloudroam <cloudroam>
Date: 星期二, 15 四月 2025 15:13:30 +0800
Subject: [PATCH] add: 增加航班和火车票
---
app.py | 254 ++++++++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 252 insertions(+), 2 deletions(-)
diff --git a/app.py b/app.py
index f697651..47aa332 100644
--- a/app.py
+++ b/app.py
@@ -7,7 +7,7 @@
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification
import torch
from werkzeug.exceptions import BadRequest
-from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig
+from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig, FlightNERConfig, TrainNERConfig
import re
# 配置日志
@@ -27,6 +27,8 @@
self.ner_path = "./models/ner_model/best_model"
self.repayment_path = "./models/repayment_model/best_model"
self.income_path = "./models/income_model/best_model"
+ self.flight_path = "./models/flight_model/best_model"
+ self.train_path = "./models/train_model/best_model" # 添加火车票模型路径
# 检查模型文件
self._check_model_files()
@@ -36,12 +38,16 @@
self.ner_tokenizer, self.ner_model = self._load_ner()
self.repayment_tokenizer, self.repayment_model = self._load_repayment()
self.income_tokenizer, self.income_model = self._load_income()
+ self.flight_tokenizer, self.flight_model = self._load_flight()
+ self.train_tokenizer, self.train_model = self._load_train() # 加载火车票模型
# 将模型设置为评估模式
self.classifier_model.eval()
self.ner_model.eval()
self.repayment_model.eval()
self.income_model.eval()
+ self.flight_model.eval()
+ self.train_model.eval() # 设置火车票模型为评估模式
def _check_model_files(self):
"""检查模型文件是否存在"""
@@ -53,6 +59,10 @@
raise RuntimeError("还款模型文件不存在,请先运行训练脚本")
if not os.path.exists(self.income_path):
raise RuntimeError("收入模型文件不存在,请先运行训练脚本")
+ if not os.path.exists(self.flight_path):
+ raise RuntimeError("航班模型文件不存在,请先运行训练脚本")
+ if not os.path.exists(self.train_path):
+ raise RuntimeError("火车票模型文件不存在,请先运行训练脚本")
def _load_classifier(self) -> Tuple[BertTokenizer, BertForSequenceClassification]:
"""加载分类模型"""
@@ -94,6 +104,26 @@
logger.error(f"加载收入模型失败: {str(e)}")
raise
+ def _load_flight(self):
+ """加载航班模型"""
+ try:
+ tokenizer = AutoTokenizer.from_pretrained(self.flight_path)
+ model = AutoModelForTokenClassification.from_pretrained(self.flight_path)
+ return tokenizer, model
+ except Exception as e:
+ logger.error(f"加载航班模型失败: {str(e)}")
+ raise
+
+ def _load_train(self):
+ """加载火车票模型"""
+ try:
+ tokenizer = AutoTokenizer.from_pretrained(self.train_path)
+ model = AutoModelForTokenClassification.from_pretrained(self.train_path)
+ return tokenizer, model
+ except Exception as e:
+ logger.error(f"加载火车票模型失败: {str(e)}")
+ raise
+
def classify_sms(self, text: str) -> str:
"""对短信进行分类"""
try:
@@ -120,7 +150,7 @@
"company": None, # 寄件公司
"address": None, # 地址
"pickup_code": None, # 取件码
- "time": None # 时间
+ "time": None # 添加时间字段
}
# 第一阶段:直接从文本中提取取件码
@@ -662,6 +692,222 @@
logger.error(f"收入实体提取失败: {str(e)}")
raise
+ def extract_flight_entities(self, text: str) -> Dict[str, Optional[str]]:
+ """提取航班相关实体"""
+ try:
+ # 初始化结果字典
+ result = {
+ "flight": None, # 航班号
+ "company": None, # 航空公司
+ "start": None, # 出发地
+ "end": None, # 目的地
+ "date": None, # 日期
+ "time": None, # 时间
+ "departure_time": None, # 起飞时间
+ "arrival_time": None, # 到达时间
+ "ticket_num": None, # 机票号码
+ "seat": None # 座位等信息
+ }
+
+ # 使用NER模型提取实体
+ inputs = self.flight_tokenizer(
+ text,
+ return_tensors="pt",
+ truncation=True,
+ max_length=FlightNERConfig.MAX_LENGTH
+ )
+
+ with torch.no_grad():
+ outputs = self.flight_model(**inputs)
+
+ predictions = torch.argmax(outputs.logits, dim=2)
+ tokens = self.flight_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
+ tags = [self.flight_model.config.id2label[p] for p in predictions[0].numpy()]
+
+ # 解析实体
+ current_entity = None
+
+ for token, tag in zip(tokens, tags):
+ if tag.startswith("B-"):
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+ current_entity = {"type": tag[2:], "text": token}
+ elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
+ current_entity["text"] += token
+ else:
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+ current_entity = None
+
+ # 处理最后一个实体
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+
+ # 处理航班号格式
+ if result["flight"]:
+ flight_no = result["flight"].upper()
+ # 清理航班号,只保留字母和数字
+ flight_no = ''.join(c for c in flight_no if c.isalnum())
+ # 验证航班号格式
+ valid_pattern = re.compile(FlightNERConfig.FLIGHT_CONFIG['pattern'])
+ if valid_pattern.match(flight_no):
+ result["flight"] = flight_no
+ else:
+ # 尝试修复常见错误
+ if len(flight_no) >= FlightNERConfig.FLIGHT_CONFIG['min_length'] and flight_no[:2].isalpha() and flight_no[2:].isdigit():
+ result["flight"] = flight_no
+ else:
+ result["flight"] = None
+
+ # 清理日期格式
+ if result["date"]:
+ date_str = result["date"]
+ # 保留数字和常见日期分隔符
+ date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
+ result["date"] = date_str
+
+ # 清理时间格式
+ for time_field in ["time", "departure_time", "arrival_time"]:
+ if result[time_field]:
+ time_str = result[time_field]
+ # 保留数字和常见时间分隔符
+ time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
+ result[time_field] = time_str
+
+ # 处理机票号码
+ if result["ticket_num"]:
+ ticket_num = result["ticket_num"]
+ # 清理机票号码,只保留字母和数字
+ ticket_num = ''.join(c for c in ticket_num if c.isalnum())
+ result["ticket_num"] = ticket_num
+
+ # 处理座位信息
+ if result["seat"]:
+ seat_str = result["seat"]
+ # 移除可能的额外空格和特殊字符
+ seat_str = seat_str.replace(" ", "").strip()
+ result["seat"] = seat_str
+
+ return result
+ except Exception as e:
+ logger.error(f"航班实体提取失败: {str(e)}")
+ raise
+
+ def extract_train_entities(self, text: str) -> Dict[str, Optional[str]]:
+ """提取火车票相关实体"""
+ try:
+ # 初始化结果字典
+ result = {
+ "company": None, # 12306
+ "trips": None, # 车次
+ "start": None, # 出发站
+ "end": None, # 到达站
+ "date": None, # 日期
+ "time": None, # 时间
+ "seat": None, # 座位等信息
+ "name": None # 用户姓名
+ }
+
+ # 使用NER模型提取实体
+ inputs = self.train_tokenizer(
+ text,
+ return_tensors="pt",
+ truncation=True,
+ max_length=TrainNERConfig.MAX_LENGTH
+ )
+
+ with torch.no_grad():
+ outputs = self.train_model(**inputs)
+
+ predictions = torch.argmax(outputs.logits, dim=2)
+ tokens = self.train_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
+ tags = [self.train_model.config.id2label[p] for p in predictions[0].numpy()]
+
+ # 解析实体
+ current_entity = None
+
+ for token, tag in zip(tokens, tags):
+ if tag.startswith("B-"):
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+ current_entity = {"type": tag[2:], "text": token}
+ elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]:
+ current_entity["text"] += token
+ else:
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+ current_entity = None
+
+ # 处理最后一个实体
+ if current_entity:
+ entity_type = current_entity["type"].lower()
+ result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip()
+
+ # 处理公司名称,通常为12306
+ if result["company"]:
+ company = result["company"].strip()
+ # 如果文本中检测不到公司名称,但包含12306,则默认为12306
+ result["company"] = company
+ elif "12306" in text:
+ result["company"] = "12306"
+
+ # 处理车次格式
+ if result["trips"]:
+ trips_no = result["trips"].upper()
+ # 清理车次号,只保留字母和数字
+ trips_no = ''.join(c for c in trips_no if c.isalnum() or c in ['/', '-'])
+
+ # 验证车次格式
+ valid_patterns = [re.compile(pattern) for pattern in TrainNERConfig.TRIPS_CONFIG['patterns']]
+ if any(pattern.match(trips_no) for pattern in valid_patterns):
+ result["trips"] = trips_no
+ else:
+ # 尝试修复常见错误
+ if len(trips_no) >= TrainNERConfig.TRIPS_CONFIG['min_length'] and any(trips_no.startswith(t) for t in TrainNERConfig.TRIPS_CONFIG['train_types']):
+ result["trips"] = trips_no
+ elif trips_no.isdigit() and 1 <= len(trips_no) <= TrainNERConfig.TRIPS_CONFIG['max_length']:
+ result["trips"] = trips_no
+ else:
+ result["trips"] = None
+
+ # 清理日期格式
+ if result["date"]:
+ date_str = result["date"]
+ # 保留数字和常见日期分隔符
+ date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.'])
+ result["date"] = date_str
+
+ # 清理时间格式
+ if result["time"]:
+ time_str = result["time"]
+ # 保留数字和常见时间分隔符
+ time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点'])
+ result["time"] = time_str
+
+ # 处理座位信息
+ if result["seat"]:
+ seat_str = result["seat"]
+ # 移除可能的额外空格和特殊字符
+ seat_str = seat_str.replace(" ", "").strip()
+ result["seat"] = seat_str
+
+ # 处理乘客姓名
+ if result["name"]:
+ name = result["name"].strip()
+ # 移除可能的标点符号
+ name = ''.join(c for c in name if c.isalnum() or c in ['*', '·'])
+ result["name"] = name
+
+ return result
+ except Exception as e:
+ logger.error(f"火车票实体提取失败: {str(e)}")
+ raise
+
# 创建Flask应用
app = Flask(__name__)
model_manager = ModelManager()
@@ -695,6 +941,10 @@
details = model_manager.extract_repayment_entities(text)
elif category == "收入":
details = model_manager.extract_income_entities(text)
+ elif category == "航班":
+ details = model_manager.extract_flight_entities(text)
+ elif category == "火车票": # 添加火车票类别处理
+ details = model_manager.extract_train_entities(text)
else:
details = {}
--
Gitblit v1.9.3