From e6fed94443177826cf7497a85e9cdcfc7c43ee21 Mon Sep 17 00:00:00 2001
From: cloudroam <cloudroam>
Date: 星期一, 21 四月 2025 16:49:49 +0800
Subject: [PATCH] fix
---
app.py | 554 +++++++++++++++++++++++++++++++++++++++++++++++++++---
1 files changed, 515 insertions(+), 39 deletions(-)
diff --git a/app.py b/app.py
index ba71f7e..9a8237a 100644
--- a/app.py
+++ b/app.py
@@ -1,6 +1,7 @@
# -*- coding: utf-8 -*-
import os
import logging
+import datetime
from typing import Dict, Optional, Tuple
from flask import Flask, request, jsonify
@@ -124,8 +125,8 @@
logger.error(f"加载火车票模型失败: {str(e)}")
raise
- def classify_sms(self, text: str) -> str:
- """对短信进行分类"""
+ def classify_sms(self, text: str) -> Tuple[str, float]:
+ """对短信进行分类,并返回置信度"""
try:
inputs = self.classifier_tokenizer(
text,
@@ -135,11 +136,243 @@
)
with torch.no_grad():
outputs = self.classifier_model(**inputs)
- pred_id = outputs.logits.argmax().item()
- return self.classifier_model.config.id2label[pred_id]
+
+ # 获取预测标签及其对应的概率
+ logits = outputs.logits
+ probabilities = torch.softmax(logits, dim=1)
+ pred_id = logits.argmax().item()
+ confidence = probabilities[0, pred_id].item() # 获取预测标签的置信度
+
+ return self.classifier_model.config.id2label[pred_id], confidence
except Exception as e:
logger.error(f"短信分类失败: {str(e)}")
raise
+
+ def is_marketing_sms(self, text: str) -> bool:
+ """判断是否为营销/广告类短信,采用评分系统"""
+ # 特定字符串模式检查:直接匹配明显的营销/通知短信
+ marketing_patterns = [
+ # 百度类通知
+ r"百度智能云.*?尊敬的用户",
+ r"百度.*?账户.*?tokens",
+ r"AppBuilder.*?账户",
+ r"账户有.*?免费额度",
+ r".*?免费额度.*?过期",
+ r"dwz\.cn\/[A-Za-z0-9]+"
+ ]
+
+ # 对特定模式直接判断
+ for pattern in marketing_patterns:
+ if re.search(pattern, text):
+ return True # 直接认为是营销短信
+
+ # 评分系统:根据短信内容特征进行评分,超过阈值判定为营销短信
+ score = 0
+
+ # 强营销特征关键词(高权重)
+ strong_marketing_keywords = [
+ "有奖", "免费赠送", "抽奖", "中奖", "优惠券", "折扣券", "特价", "秒杀",
+ "限时抢购", "促销", "推广", "广告", "代金券", "0元购", "tokens调用量"
+ ]
+
+ # 一般营销特征关键词(中等权重)
+ general_marketing_keywords = [
+ "活动", "优惠", "折扣", "限时", "抢购", "特价", "promotion", "推广",
+ "开业", "集点", "集赞", "关注", "公众号", "小程序", "注册有礼", "免费额度"
+ ]
+
+ # 弱营销特征关键词(低权重,可能出现在正常短信中)
+ weak_marketing_keywords = [
+ "尊敬的用户", "尊敬的客户", "您好", "注册", "登录", "账户", "账号",
+ "会员", "积分", "权益", "提醒", "即将", "有效期", "过期", "升级",
+ "更新", "下载", "APP", "应用", "平台", "网址", "点击", "工单"
+ ]
+
+ # 短网址和链接(独立评估,结合其他特征判断)
+ url_patterns = [
+ "dwz.cn", "t.cn", "短网址", "http://", "https://", "cmbt.cn"
+ ]
+
+ # 业务短信特征(用于反向识别,降低误判率)
+ # 快递短信特征
+ express_keywords = [
+ "快递", "包裹", "取件码", "取件", "签收", "派送", "配送", "物流",
+ "驿站", "在途", "揽收", "暂存", "已到达", "丰巢", "柜取件", "柜机"
+ ]
+
+ # 还款短信特征
+ repayment_keywords = [
+ "还款", "账单", "信用卡", "借款", "贷款", "逾期", "欠款", "最低还款",
+ "应还金额", "到期还款", "还清", "应还", "还款日", "账单¥", "账单¥", "查账还款"
+ ]
+
+ # 收入短信特征
+ income_keywords = [
+ "收入", "转账", "入账", "到账", "支付", "工资", "报销", "余额",
+ "成功收款", "收到", "款项"
+ ]
+
+ # 航班/火车票特征
+ travel_keywords = [
+ "航班", "航空", "飞机", "机票", "火车", "铁路", "列车", "车票",
+ "出发", "抵达", "起飞", "登机", "候车", "检票"
+ ]
+
+ # 额外增加:通知类短信特征(通常不需要处理的短信)
+ notification_keywords = [
+ "余额不足", "话费不足", "话费余额", "通讯费", "流量用尽", "流量不足",
+ "停机", "恢复通话", "自动充值", "交费", "缴费",
+ "消费提醒", "交易提醒", "动账", "短信通知", "验证码", "校验码", "安全码"
+ ]
+
+ # 运营商标识
+ telecom_keywords = [
+ "中国电信", "中国移动", "中国联通", "电信", "移动", "联通",
+ "携号转网", "号码服务", "通讯服务", "189.cn", "10086", "10010"
+ ]
+
+ # 银行和金融机构标识
+ bank_keywords = [
+ "信用卡", "储蓄卡", "借记卡", "储蓄", "银联",
+ "建设银行", "工商银行", "农业银行", "中国银行", "交通银行",
+ "招商银行", "浦发银行", "民生银行", "兴业银行", "广发银行",
+ "平安银行", "中信银行", "光大银行", "华夏银行", "邮储银行",
+ "农商银行", "支付宝", "微信支付", "京东金融", "度小满", "陆金所"
+ ]
+
+ # 特殊情况检查:招商银行账单短信,不应被过滤
+ if ("招商银行" in text and ("账单" in text or "还款日" in text)) or "cmbt.cn" in text:
+ if "还款" in text or "账单" in text or "消费卡" in text:
+ return False # 是还款短信,不过滤
+
+ # 计算评分
+ # 首先检查业务短信特征,如果明确是业务短信,直接返回False
+ has_express_feature = any(keyword in text for keyword in express_keywords)
+ has_repayment_feature = any(keyword in text for keyword in repayment_keywords)
+ has_income_feature = any(keyword in text for keyword in income_keywords)
+ has_travel_feature = any(keyword in text for keyword in travel_keywords)
+
+ # 检查是否为百度通知
+ is_baidu_notification = "百度" in text and "尊敬的用户" in text
+ if is_baidu_notification:
+ return True # 百度通知应被过滤
+
+ # 如果短信中包含多个业务关键词(≥2个),很可能是重要的业务短信
+ business_score = (has_express_feature + has_repayment_feature +
+ has_income_feature + has_travel_feature)
+ if business_score >= 2 and not is_baidu_notification:
+ return False # 多个业务特征同时存在,不太可能是营销短信
+
+ # 检查强营销特征
+ for keyword in strong_marketing_keywords:
+ if keyword in text:
+ score += 3
+
+ # 检查一般营销特征
+ for keyword in general_marketing_keywords:
+ if keyword in text:
+ score += 2
+
+ # 检查弱营销特征
+ for keyword in weak_marketing_keywords:
+ if keyword in text:
+ score += 1
+
+ # 检查URL特征(结合是否存在业务特征)
+ has_url = any(pattern in text for pattern in url_patterns)
+
+ # 降低业务特征短信的营销判定分数
+ if has_express_feature and not is_baidu_notification:
+ score -= 3 # 快递特征明显减分
+
+ if has_repayment_feature:
+ score -= 3 # 还款特征明显减分
+
+ if has_income_feature:
+ score -= 2 # 收入特征减分
+
+ if has_travel_feature:
+ score -= 2 # 旅行特征减分
+
+ # 检查通知类短信特征(但不包括重要的业务短信)
+ if not has_express_feature and not has_repayment_feature: # 确保不是快递和还款短信
+ notification_count = sum(1 for keyword in notification_keywords if keyword in text)
+ if notification_count >= 2: # 需要至少2个通知关键词才判定
+ score += notification_count # 增加判定为营销/通知短信的可能性
+
+ # 检查运营商和银行标识(结合其他特征判断)
+ has_telecom_feature = any(keyword in text for keyword in telecom_keywords)
+ has_bank_feature = any(keyword in text for keyword in bank_keywords)
+
+ # URL的评分处理
+ if has_url:
+ if (has_express_feature or has_repayment_feature or has_income_feature or has_travel_feature) and not is_baidu_notification:
+ # URL在业务短信中可能是正常的追踪链接,不增加评分
+ pass
+ else:
+ # 纯URL且无业务特征,可能是营销短信
+ score += 2
+
+ # 特殊情况:运营商余额通知
+ if has_telecom_feature and "余额" in text and not has_income_feature:
+ score += 2
+
+ # 设置判定阈值
+ threshold = 4 # 需要至少4分才判定为营销短信
+
+ return score >= threshold
+
+ def is_notification_sms(self, text: str) -> bool:
+ """判断是否为通知类短信(如银行交易通知、运营商提醒等)"""
+ # 银行交易通知特征(不包括还款提醒)
+ bank_transaction_patterns = [
+ r"您尾号\d+的.+消费",
+ r"您.+账户消费[\d,.]+元",
+ r"交易[\d,.]+元",
+ r"支付宝.+消费",
+ r"微信支付.+消费",
+ r"\d{1,2}月\d{1,2}日\d{1,2}[::]\d{1,2}消费",
+ r"银行卡([支付|消费|扣款])"
+ ]
+
+ # 排除规则:包含以下关键词的短信不应被判定为通知短信
+ business_keywords = [
+ # 还款关键词
+ "还款", "账单", "应还", "到期还款", "还款日", "最低还款", "账单¥", "账单¥", "查账还款",
+ # 快递关键词
+ "快递", "包裹", "取件码", "取件", "签收", "派送", "配送",
+ # 收入关键词
+ "收入", "转账", "入账", "到账", "支付成功", "工资"
+ ]
+
+ # 运营商余额通知特征
+ telecom_balance_patterns = [
+ r"余额[不足|低于][\d,.]+元",
+ r"话费[不足|仅剩][\d,.]+元",
+ r"流量[不足|即将用尽]",
+ r"[电信|移动|联通].+余额",
+ r"[停机|停号]提醒",
+ r"为了保障您的正常通讯",
+ ]
+
+ # 首先检查是否包含业务关键词,有则不应判定为通知短信
+ for keyword in business_keywords:
+ if keyword in text:
+ return False # 包含业务关键词,不是需要过滤的通知短信
+
+ # 检查银行交易通知模式
+ for pattern in bank_transaction_patterns:
+ if re.search(pattern, text):
+ logger.debug(f"识别到银行交易通知短信:{text[:30]}...")
+ return True
+
+ # 检查运营商余额通知模式
+ for pattern in telecom_balance_patterns:
+ if re.search(pattern, text):
+ logger.debug(f"识别到运营商余额通知短信:{text[:30]}...")
+ return True
+
+ return False
def extract_entities(self, text: str) -> Dict[str, Optional[str]]:
"""提取文本中的实体"""
@@ -504,8 +737,15 @@
result["date"] = date
# 处理金额
- # 先尝试使用正则表达式直接匹配金额
- amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text)
+ # 尝试匹配带¥符号的账单金额模式
+ amount_match = re.search(r'账单¥([\d,]+\.?\d*)', text)
+ if not amount_match:
+ # 尝试匹配带¥符号的账单金额模式
+ amount_match = re.search(r'账单¥([\d,]+\.?\d*)', text)
+ if not amount_match:
+ # 尝试匹配一般金额模式
+ amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text)
+
if amount_match:
amount = amount_match.group(1) # 保留原始格式(带逗号)
# 验证金额有效性
@@ -531,9 +771,13 @@
# 如果还是没有找到,尝试从文本中提取
if not amount_candidates:
- # 使用更宽松的正则表达式匹配金额
- amount_pattern = re.compile(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)')
- matches = list(amount_pattern.finditer(text))
+ # 使用多个正则表达式匹配不同格式的金额
+ # 1. 匹配带¥符号格式
+ matches = list(re.finditer(r'¥([\d,]+\.?\d*)', text))
+ # 2. 匹配带¥符号格式
+ matches.extend(list(re.finditer(r'¥([\d,]+\.?\d*)', text)))
+ # 3. 匹配一般金额格式
+ matches.extend(list(re.finditer(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)', text)))
for match in matches:
amount_text = match.group(1) # 获取数字部分,保留逗号
@@ -711,37 +955,116 @@
result["datetime"] = datetime
# 处理收入金额
- amount_candidates = []
- # 首先从识别的实体中获取
- for amount in entities["PICKUP_CODE"]:
- cleaned_amount = clean_amount(amount, text)
- if cleaned_amount:
- try:
- value = float(cleaned_amount)
- amount_candidates.append((cleaned_amount, value))
- except ValueError:
- continue
+ # 先尝试使用正则表达式直接匹配收入金额,包括"收入金额"格式
+ amount_match = re.search(r'收入金额([\d,]+\.?\d*)元', text)
+ if not amount_match:
+ # 尝试匹配一般收入格式
+ amount_match = re.search(r'收入([\d,]+\.?\d*)元', text)
- # 如果没有找到有效金额,直接从文本中尝试提取
- if not amount_candidates:
- # 直接在整个文本中寻找金额模式
- amount_pattern = re.compile(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)')
- matches = list(amount_pattern.finditer(text))
+ if amount_match:
+ amount = amount_match.group(1) # 保留原始格式(带逗号)
+ # 验证金额有效性
+ try:
+ value = float(amount.replace(',', ''))
+ if value > 0:
+ result["amount"] = amount
+ except ValueError:
+ pass
+
+ # 如果正则没有匹配到,继续尝试NER结果
+ if not result["amount"]:
+ amount_candidates = []
+ # 首先从识别的实体中获取
+ for amount in entities["PICKUP_CODE"]:
+ cleaned_amount = clean_amount(amount, text)
+ if cleaned_amount:
+ try:
+ value = float(cleaned_amount)
+ amount_candidates.append((cleaned_amount, value))
+ except ValueError:
+ continue
- for match in matches:
- amount_text = match.group(1)
+ # 如果没有找到有效金额,直接从文本中尝试提取
+ if not amount_candidates:
+ # 尝试多种模式匹配金额
+ # 1. 匹配"收入金额xxx元"模式
+ matches = list(re.finditer(r'收入金额([\d,]+\.?\d*)元', text))
+ # 2. 匹配"收入xxx元"模式
+ matches.extend(list(re.finditer(r'收入([\d,]+\.?\d*)元', text)))
+ # 3. 匹配带元结尾的金额
+ matches.extend(list(re.finditer(r'([0-9,]+\.[0-9]+)元', text)))
+ # 4. 匹配普通数字(可能是余额),但排除已识别为余额的金额
+ if "余额" in text:
+ balance_match = re.search(r'余额([\d,]+\.?\d*)元', text)
+ if balance_match:
+ balance_value = balance_match.group(1)
+ # 只匹配不等于余额的金额
+ all_numbers = re.finditer(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)', text)
+ for match in all_numbers:
+ if match.group(1) != balance_value:
+ matches.append(match)
+ else:
+ matches.extend(list(re.finditer(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)', text)))
+
+ for match in matches:
+ amount_text = match.group(1)
+ try:
+ value = float(amount_text.replace(',', ''))
+ amount_candidates.append((amount_text, value))
+ except ValueError:
+ continue
+
+ # 从金额候选中排除已识别的余额值
+ if result["balance"]:
try:
- value = float(amount_text.replace(',', ''))
- amount_candidates.append((amount_text, value))
+ balance_value = float(result["balance"].replace(',', ''))
+ amount_candidates = [(text, value) for text, value in amount_candidates if abs(value - balance_value) > 0.01]
except ValueError:
- continue
-
- # 选择最合适的有效金额
- if amount_candidates:
- result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
+ pass
+
+ # 选择适当的金额作为收入
+ if amount_candidates:
+ has_income_amount_keyword = "收入金额" in text
+
+ if has_income_amount_keyword:
+ # 查找"收入金额"附近的数字
+ idx = text.find("收入金额")
+ if idx != -1:
+ closest_amount = None
+ min_distance = float('inf')
+ for amount_text, value in amount_candidates:
+ # 找到这个数字在原文中的位置
+ amount_idx = text.find(amount_text)
+ if amount_idx != -1:
+ distance = abs(amount_idx - idx)
+ if distance < min_distance:
+ min_distance = distance
+ closest_amount = amount_text
+
+ if closest_amount:
+ result["amount"] = closest_amount
+ else:
+ # 如果无法找到最近的金额,使用最大金额策略
+ result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
+ else:
+ # 如果没有"收入金额"关键词,则使用最大金额策略
+ result["amount"] = max(amount_candidates, key=lambda x: x[1])[0]
# 处理余额
- if entities["BALANCE"]:
+ # 先尝试使用正则表达式直接匹配余额
+ balance_match = re.search(r'余额([\d,]+\.?\d*)元', text)
+ if balance_match:
+ balance = balance_match.group(1) # 保留原始格式(带逗号)
+ # 验证金额有效性
+ try:
+ value = float(balance.replace(',', ''))
+ if value > 0:
+ result["balance"] = balance
+ except ValueError:
+ pass
+
+ # 如果正则没有匹配到,使用NER结果
+ if not result["balance"] and entities["BALANCE"]:
for amount in entities["BALANCE"]:
cleaned_amount = clean_amount(amount, text)
if cleaned_amount:
@@ -974,6 +1297,45 @@
app = Flask(__name__)
model_manager = ModelManager()
+# 添加保存短信到文件的函数
+def save_sms_to_file(text: str, category: str = None, confidence: float = None) -> bool:
+ """
+ 将短信内容保存到本地文件
+
+ Args:
+ text: 短信内容
+ category: 分类结果
+ confidence: 分类置信度
+
+ Returns:
+ bool: 保存成功返回True,否则返回False
+ """
+ try:
+ # 确保日志目录存在
+ log_dir = "./sms_logs"
+ if not os.path.exists(log_dir):
+ os.makedirs(log_dir)
+
+ # 创建基于日期的文件名
+ today = datetime.datetime.now().strftime("%Y-%m-%d")
+ file_path = os.path.join(log_dir, f"sms_log_{today}.txt")
+
+ # 获取当前时间
+ current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
+
+ # 准备要写入的内容
+ category_info = f"分类: {category}, 置信度: {confidence:.4f}" if category and confidence else "未分类"
+ log_content = f"[{current_time}] {category_info}\n{text}\n{'='*50}\n"
+
+ # 以追加模式写入文件
+ with open(file_path, 'a', encoding='utf-8') as f:
+ f.write(log_content)
+
+ return True
+ except Exception as e:
+ logger.error(f"保存短信到文件失败: {str(e)}")
+ return False
+
@app.route("/health", methods=["GET"])
def health_check():
"""健康检查接口"""
@@ -994,9 +1356,123 @@
text = data["content"]
if not isinstance(text, str) or not text.strip():
raise BadRequest("短信内容不能为空")
-
+
+ # 保存原始短信内容到文件
+ save_sms_to_file(text)
+
+ # 特定短信识别逻辑 - 针对百度通知和招商银行账单
+ # 识别百度通知
+ if "百度智能云" in text and "尊敬的用户" in text and "免费额度" in text:
+ logger.info(f"直接识别为百度通知短信: {text[:30]}...")
+ category = "其他"
+ save_sms_to_file(text, category, 1.0) # 记录分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": {}
+ }
+ })
+
+ # 识别招商银行账单
+ if "招商银行" in text and ("账单¥" in text or "账单¥" in text or "还款日" in text):
+ logger.info(f"直接识别为招商银行还款短信: {text[:30]}...")
+ category = "还款"
+ details = model_manager.extract_repayment_entities(text)
+ save_sms_to_file(text, category, 1.0) # 记录分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": details
+ }
+ })
+
# 处理短信
- category = model_manager.classify_sms(text)
+ category, confidence = model_manager.classify_sms(text)
+
+ # 保存短信内容和分类结果
+ save_sms_to_file(text, category, confidence)
+
+ # 如果是明确的业务短信类别,直接进入处理流程
+ if category in ["快递", "还款", "收入", "航班", "火车票"] and confidence > 0.5:
+ # 对百度通知的特殊处理
+ if category == "快递" and "百度" in text and "尊敬的用户" in text:
+ logger.info(f"纠正百度通知短信的分类: {text[:30]}...")
+ category = "其他"
+ save_sms_to_file(text, category, confidence) # 更新分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": {}
+ }
+ })
+
+ # 对于高置信度的业务分类,直接进入实体提取
+ if category == "快递":
+ details = model_manager.extract_entities(text)
+ elif category == "还款":
+ details = model_manager.extract_repayment_entities(text)
+ elif category == "收入":
+ details = model_manager.extract_income_entities(text)
+ elif category == "航班":
+ details = model_manager.extract_flight_entities(text)
+ elif category == "火车票":
+ details = model_manager.extract_train_entities(text)
+
+ logger.info(f"高置信度业务短信: {text[:30]}..., category: {category}, confidence: {confidence:.4f}")
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": details
+ }
+ })
+
+ # 检查是否为营销/广告短信
+ if model_manager.is_marketing_sms(text):
+ # 如果是营销/广告短信,直接归类为"其他"
+ logger.info(f"检测到营销/广告短信: {text[:30]}...")
+ category = "其他"
+ save_sms_to_file(text, category, confidence) # 更新分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": {}
+ }
+ })
+
+ # 检查是否为通知类短信
+ if model_manager.is_notification_sms(text):
+ # 如果是通知类短信,直接归类为"其他"
+ logger.info(f"检测到通知类短信: {text[:30]}...")
+ category = "其他"
+ save_sms_to_file(text, category, confidence) # 更新分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": {}
+ }
+ })
+
+ # 置信度阈值,低于此阈值的分类结果被视为"其他"
+ confidence_threshold = 0.7
+ if confidence < confidence_threshold:
+ logger.info(f"短信分类置信度低({confidence:.4f}),归类为'其他': {text[:30]}...")
+ category = "其他"
+ save_sms_to_file(text, category, confidence) # 更新分类结果
+ return jsonify({
+ "status": "success",
+ "data": {
+ "category": category,
+ "details": {}
+ }
+ })
+
+ # 根据分类结果调用对应的实体提取函数
if category == "快递":
details = model_manager.extract_entities(text)
elif category == "还款":
@@ -1005,13 +1481,13 @@
details = model_manager.extract_income_entities(text)
elif category == "航班":
details = model_manager.extract_flight_entities(text)
- elif category == "火车票": # 添加火车票类别处理
+ elif category == "火车票":
details = model_manager.extract_train_entities(text)
else:
details = {}
# 记录处理结果
- logger.info(f"Successfully processed SMS: {text[:30]}...")
+ logger.info(f"Successfully processed SMS: {text[:30]}..., category: {category}, confidence: {confidence:.4f}")
return jsonify({
"status": "success",
@@ -1020,7 +1496,7 @@
"details": details
}
})
-
+ save_sms_to_file
except BadRequest as e:
logger.warning(f"Invalid request: {str(e)}")
return jsonify({
--
Gitblit v1.9.3