# -*- coding: utf-8 -*- import os import logging from typing import Dict, Optional, Tuple from flask import Flask, request, jsonify from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification import torch from werkzeug.exceptions import BadRequest from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig, FlightNERConfig, TrainNERConfig import re # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('app.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) class ModelManager: def __init__(self): self.classifier_path = "./models/classifier" self.ner_path = "./models/ner_model/best_model" self.repayment_path = "./models/repayment_model/best_model" self.income_path = "./models/income_model/best_model" self.flight_path = "./models/flight_model/best_model" self.train_path = "./models/train_model/best_model" # 添加火车票模型路径 # 检查模型文件 self._check_model_files() # 加载模型 self.classifier_tokenizer, self.classifier_model = self._load_classifier() self.ner_tokenizer, self.ner_model = self._load_ner() self.repayment_tokenizer, self.repayment_model = self._load_repayment() self.income_tokenizer, self.income_model = self._load_income() self.flight_tokenizer, self.flight_model = self._load_flight() self.train_tokenizer, self.train_model = self._load_train() # 加载火车票模型 # 将模型设置为评估模式 self.classifier_model.eval() self.ner_model.eval() self.repayment_model.eval() self.income_model.eval() self.flight_model.eval() self.train_model.eval() # 设置火车票模型为评估模式 def _check_model_files(self): """检查模型文件是否存在""" if not os.path.exists(self.classifier_path): raise RuntimeError("分类模型文件不存在,请先运行训练脚本") if not os.path.exists(self.ner_path): raise RuntimeError("NER模型文件不存在,请先运行训练脚本") if not os.path.exists(self.repayment_path): raise RuntimeError("还款模型文件不存在,请先运行训练脚本") if not os.path.exists(self.income_path): raise RuntimeError("收入模型文件不存在,请先运行训练脚本") if not os.path.exists(self.flight_path): raise RuntimeError("航班模型文件不存在,请先运行训练脚本") if not os.path.exists(self.train_path): raise RuntimeError("火车票模型文件不存在,请先运行训练脚本") def _load_classifier(self) -> Tuple[BertTokenizer, BertForSequenceClassification]: """加载分类模型""" try: tokenizer = BertTokenizer.from_pretrained(self.classifier_path) model = BertForSequenceClassification.from_pretrained(self.classifier_path) return tokenizer, model except Exception as e: logger.error(f"加载分类模型失败: {str(e)}") raise def _load_ner(self) -> Tuple[AutoTokenizer, AutoModelForTokenClassification]: """加载NER模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.ner_path) model = AutoModelForTokenClassification.from_pretrained(self.ner_path) return tokenizer, model except Exception as e: logger.error(f"加载NER模型失败: {str(e)}") raise def _load_repayment(self): """加载还款模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.repayment_path) model = AutoModelForTokenClassification.from_pretrained(self.repayment_path) return tokenizer, model except Exception as e: logger.error(f"加载还款模型失败: {str(e)}") raise def _load_income(self): """加载收入模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.income_path) model = AutoModelForTokenClassification.from_pretrained(self.income_path) return tokenizer, model except Exception as e: logger.error(f"加载收入模型失败: {str(e)}") raise def _load_flight(self): """加载航班模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.flight_path) model = AutoModelForTokenClassification.from_pretrained(self.flight_path) return tokenizer, model except Exception as e: logger.error(f"加载航班模型失败: {str(e)}") raise def _load_train(self): """加载火车票模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.train_path) model = AutoModelForTokenClassification.from_pretrained(self.train_path) return tokenizer, model except Exception as e: logger.error(f"加载火车票模型失败: {str(e)}") raise def classify_sms(self, text: str) -> str: """对短信进行分类""" try: inputs = self.classifier_tokenizer( text, return_tensors="pt", truncation=True, max_length=64 ) with torch.no_grad(): outputs = self.classifier_model(**inputs) pred_id = outputs.logits.argmax().item() return self.classifier_model.config.id2label[pred_id] except Exception as e: logger.error(f"短信分类失败: {str(e)}") raise def extract_entities(self, text: str) -> Dict[str, Optional[str]]: """提取文本中的实体""" try: # 初始化结果字典 result = { "post": None, # 快递公司 "company": None, # 寄件公司 "address": None, # 地址 "pickup_code": None, # 取件码 "time": None # 添加时间字段 } # 第一阶段:直接从文本中提取取件码 pickup_code = self.extract_pickup_code_from_text(text) if pickup_code: result["pickup_code"] = pickup_code # 第二阶段:使用NER模型提取其他实体 inputs = self.ner_tokenizer( text, return_tensors="pt", truncation=True, max_length=64 ) with torch.no_grad(): outputs = self.ner_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.ner_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.ner_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None entity_start = None for i, (token, tag) in enumerate(zip(tokens, tags)): # 跳过取件码实体,因为我们已经单独处理了 if tag.startswith("B-") and tag[2:] != "PICKUP_CODE": # 保存之前的实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 开始新实体 current_entity = {"type": tag[2:], "text": token} entity_start = i elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"] and current_entity["type"] != "PICKUP_CODE": current_entity["text"] += token elif tag == "O" or tag.startswith("B-"): # 结束当前实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 如果第一阶段没有提取到取件码,使用NER模型的结果 if not result["pickup_code"]: # 重新解析一次,只提取取件码 current_entity = None for i, (token, tag) in enumerate(zip(tokens, tags)): if tag.startswith("B-") and tag[2:] == "PICKUP_CODE": current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == "PICKUP_CODE": current_entity["text"] += token elif (tag == "O" or tag.startswith("B-")) and current_entity: result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity and current_entity["type"] == "PICKUP_CODE": result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 后处理:清理和验证取件码 if result["pickup_code"]: # 清理取件码 code = result["pickup_code"] # 移除取件码后的额外文字 for word in ["的", "来", "到", "取", "件", "码"]: if word in code: code = code[:code.index(word)] # 只保留字母、数字和连字符 code = ''.join(c for c in code if c.isalnum() or c == "-") # 确保格式正确 parts = code.split("-") valid_parts = [] for part in parts: if part and any(c.isalnum() for c in part): valid_parts.append(part) if valid_parts: result["pickup_code"] = "-".join(valid_parts) else: result["pickup_code"] = None # 清理公司名称 if result["company"]: company = result["company"] invalid_words = ["包裹", "快递", "到"] for word in invalid_words: if company.endswith(word): company = company[:-len(word)] result["company"] = company.strip() # 清理地址 if result["address"]: address = result["address"] invalid_suffixes = [",请尽快取件", ",询", "请尽快取件"] for suffix in invalid_suffixes: if address.endswith(suffix): address = address[:-len(suffix)] result["address"] = address.strip() return result except Exception as e: logger.error(f"实体提取失败: {str(e)}") raise def extract_pickup_code_from_text(self, text: str) -> Optional[str]: """直接从文本提取取件码""" # 先尝试直接匹配完整的取件码格式 pickup_patterns = [ # 带有上下文的取件码模式(包括字母数字组合) r'凭\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})\s*(来|到)?', # 匹配"凭xx-xx-xxxx"格式 r'码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"码xx-xx-xxxx"格式 r'提货码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"提货码xx-xx-xxxx"格式 r'取件码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"取件码xx-xx-xxxx"格式 # 分组提取模式,对有上下文的取件码 r'凭\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})\s*(来|到)?', # 匹配"凭xx-xx-xxxx" r'码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"码xx-xx-xxxx" r'提货码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"提货码xx-xx-xxxx" r'取件码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"取件码xx-xx-xxxx" # 独立的取件码模式 r'([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配独立的xx-xx-xxxx格式,支持字母 r'(\d{1,2}-\d{1,2}-\d{4,6})', # 匹配独立的xx-xx-xxxx格式,纯数字 ] # 首先尝试整体匹配 for pattern in pickup_patterns[:4]: # 前4个是整体匹配模式 matches = re.findall(pattern, text) if matches: return matches[0] if isinstance(matches[0], str) else matches[0][0] # 然后尝试分组匹配 for pattern in pickup_patterns[4:8]: # 中间4个是分组匹配模式 matches = re.findall(pattern, text) if matches: # 分组匹配,第一部分可以是字母数字组合 match = matches[0] if len(match) >= 3: # 确保第2、3部分是数字 if match[1].isdigit() and match[2].isdigit(): return f"{match[0]}-{match[1]}-{match[2]}" # 最后尝试独立模式 for pattern in pickup_patterns[8:10]: # 最后2个是独立匹配模式 matches = re.findall(pattern, text) if matches: return matches[0] # 特殊处理包含"取件码"的文本 code_indicators = ["取件码", "提货码"] for indicator in code_indicators: if indicator in text: idx = text.find(indicator) # 检查紧跟着的文本 search_text = text[idx:idx+35] # 扩大搜索范围 # 尝试匹配"取件码A8-1-15"这样的格式 special_match = re.search(r'[码]\s*([A-Za-z0-9]+[-\s]+\d+[-\s]+\d+)', search_text) if special_match: # 规范化格式 code = special_match.group(1) # 将空格替换为连字符,确保格式一致 code = re.sub(r'\s+', '-', code) # 确保连字符格式正确 code = re.sub(r'-+', '-', code) return code # 特殊处理"凭"后面的数字序列 if "凭" in text: pickup_index = text.find("凭") if pickup_index != -1: # 在"凭"之后的25个字符内寻找取件码 search_text = text[pickup_index:pickup_index+35] # 尝试提取形如"凭A8-1-15"或"凭22-4-1111"的格式 alpha_num_match = re.search(r'凭\s*([A-Za-z0-9]+)[-\s]+(\d+)[-\s]+(\d+)', search_text) if alpha_num_match: return f"{alpha_num_match.group(1)}-{alpha_num_match.group(2)}-{alpha_num_match.group(3)}" # 提取所有字母数字序列 parts = re.findall(r'[A-Za-z0-9]+', search_text) if len(parts) >= 3: # 组合前三个部分 return f"{parts[0]}-{parts[1]}-{parts[2]}" # 查找形如"A8-1-15"的取件码 alpha_num_codes = re.findall(r'([A-Za-z]\d+)-(\d+)-(\d+)', text) if alpha_num_codes: match = alpha_num_codes[0] return f"{match[0]}-{match[1]}-{match[2]}" return None def extract_repayment_entities(self, text: str) -> Dict[str, Optional[str]]: """提取还款相关实体""" try: result = { "bank": None, # 还款主体 "type": None, # 还款类型 "amount": None, # 还款金额 "date": None, # 还款日期 "number": None, # 账号尾号 "min_amount": None # 最低还款金额 } inputs = self.repayment_tokenizer( text, return_tensors="pt", truncation=True, max_length=RepaymentNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.repayment_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.repayment_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.repayment_model.config.id2label[p] for p in predictions[0].numpy()] def clean_amount(amount_text: str, context: str) -> Optional[str]: """清理和标准化金额""" if not amount_text: return None # 在上下文中查找完整金额 amount_index = context.find(amount_text) if amount_index != -1: # 扩大搜索范围,查找完整金额 search_start = max(0, amount_index - 10) # 增加向前搜索范围 search_end = min(len(context), amount_index + len(amount_text) + 10) search_text = context[search_start:search_end] # 使用更精确的正则表达式查找金额模式 amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)') matches = list(amount_pattern.finditer(search_text)) # 找到最接近且最长的完整金额 best_match = None min_distance = float('inf') max_length = 0 target_pos = amount_index - search_start for match in matches: match_pos = match.start() distance = abs(match_pos - target_pos) match_text = match.group(1) # 优先选择更长的匹配,除非距离差异太大 if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance): try: # 验证金额是否合理 value = float(match_text) if value > 0 and value <= 9999999.99: # 设置合理的金额范围 best_match = match_text min_distance = distance max_length = len(match_text) except ValueError: continue if best_match: amount_text = best_match # 移除货币符号和无效词 for symbol in RepaymentNERConfig.AMOUNT_CONFIG['currency_symbols']: amount_text = amount_text.replace(symbol, '') for word in RepaymentNERConfig.AMOUNT_CONFIG['invalid_words']: amount_text = amount_text.replace(word, '') # 处理金额中的逗号 amount_text = amount_text.replace(',', '') try: # 转换为浮点数 value = float(amount_text) # 验证整数位数 integer_part = str(int(value)) if len(integer_part) <= RepaymentNERConfig.AMOUNT_CONFIG['max_integer_digits']: # 保持原始小数位数 if '.' in amount_text: decimal_places = len(amount_text.split('.')[1]) return f"{value:.{decimal_places}f}" return str(int(value)) except ValueError: pass return None # 实体提取 current_entity = None entities = { "BANK": [], "TYPE": [], "PICKUP_CODE": [], "DATE": [], "NUMBER": [], "MIN_CODE": [] } for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = {"type": tag[2:], "text": token.replace("##", "")} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token.replace("##", "") else: if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = None if current_entity: entities[current_entity["type"]].append(current_entity["text"]) # 处理银行名称 if entities["BANK"]: # 修改银行名称处理逻辑 bank_parts = [] seen = set() # 用于去重 for bank in entities["BANK"]: bank = bank.strip() if bank and bank not in seen: # 避免重复 bank_parts.append(bank) seen.add(bank) bank = "".join(bank_parts) if len(bank) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["BANK"]: result["bank"] = bank # 处理还款类型 if entities["TYPE"]: type_ = "".join(entities["TYPE"]).strip() if len(type_) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["TYPE"]: result["type"] = type_ # 处理账号尾号 if entities["NUMBER"]: number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit()) if number and len(number) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["NUMBER"]: result["number"] = number # 处理日期 if entities["DATE"]: date = "".join(entities["DATE"]) date = ''.join(c for c in date if c.isdigit() or c in ['年', '月', '日']) if date: result["date"] = date # 处理金额 amount_candidates = [] for amount in entities["PICKUP_CODE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: try: value = float(cleaned_amount) amount_candidates.append((cleaned_amount, value)) except ValueError: continue # 选择最大的有效金额 if amount_candidates: # 按金额大小排序,选择最大的 result["amount"] = max(amount_candidates, key=lambda x: x[1])[0] # 处理最低还款金额 for amount in entities["MIN_CODE"]: cleaned_amount = clean_amount(amount, text) # 传入原始文本作为上下文 if cleaned_amount: result["min_amount"] = cleaned_amount break return result except Exception as e: logger.error(f"还款实体提取失败: {str(e)}") raise def extract_income_entities(self, text: str) -> Dict[str, Optional[str]]: """提取收入相关实体""" try: result = { "bank": None, # 银行名称 "number": None, # 账号尾号 "datetime": None, # 交易时间 "amount": None, # 收入金额 "balance": None # 余额 } inputs = self.income_tokenizer( text, return_tensors="pt", truncation=True, max_length=IncomeNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.income_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.income_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.income_model.config.id2label[p] for p in predictions[0].numpy()] def clean_amount(amount_text: str, context: str) -> Optional[str]: """清理和标准化金额""" if not amount_text: return None # 在上下文中查找完整金额 amount_index = context.find(amount_text) if amount_index != -1: # 扩大搜索范围,查找完整金额 search_start = max(0, amount_index - 10) search_end = min(len(context), amount_index + len(amount_text) + 10) search_text = context[search_start:search_end] # 使用正则表达式查找金额模式 import re amount_pattern = re.compile(r'(\d{1,10}(?:\.\d{1,2})?)') matches = list(amount_pattern.finditer(search_text)) # 找到最接近且最长的完整金额 best_match = None min_distance = float('inf') max_length = 0 target_pos = amount_index - search_start for match in matches: match_pos = match.start() distance = abs(match_pos - target_pos) match_text = match.group(1) if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance): try: value = float(match_text) if value > 0: best_match = match_text min_distance = distance max_length = len(match_text) except ValueError: continue if best_match: amount_text = best_match # 移除货币符号和无效词 for symbol in IncomeNERConfig.AMOUNT_CONFIG['currency_symbols']: amount_text = amount_text.replace(symbol, '') for word in IncomeNERConfig.AMOUNT_CONFIG['invalid_words']: amount_text = amount_text.replace(word, '') # 处理金额中的逗号 amount_text = amount_text.replace(',', '') try: value = float(amount_text) if '.' in amount_text: decimal_places = len(amount_text.split('.')[1]) return f"{value:.{decimal_places}f}" return str(int(value)) except ValueError: pass return None # 实体提取 current_entity = None entities = { "BANK": [], "NUMBER": [], "DATATIME": [], "PICKUP_CODE": [], "BALANCE": [] } for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = {"type": tag[2:], "text": token.replace("##", "")} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token.replace("##", "") else: if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = None if current_entity: entities[current_entity["type"]].append(current_entity["text"]) # 处理银行名称 if entities["BANK"]: bank_parts = [] seen = set() for bank in entities["BANK"]: bank = bank.strip() if bank and bank not in seen: bank_parts.append(bank) seen.add(bank) bank = "".join(bank_parts) if len(bank) <= IncomeNERConfig.MAX_ENTITY_LENGTH["BANK"]: result["bank"] = bank # 处理账号尾号 if entities["NUMBER"]: number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit()) if number and len(number) <= IncomeNERConfig.MAX_ENTITY_LENGTH["NUMBER"]: result["number"] = number # 处理交易时间 if entities["DATATIME"]: datetime = "".join(entities["DATATIME"]) datetime = ''.join(c for c in datetime if c.isdigit() or c in ['年', '月', '日', '时', '分', ':', '-']) if datetime: result["datetime"] = datetime # 处理收入金额 if entities["PICKUP_CODE"]: for amount in entities["PICKUP_CODE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: result["amount"] = cleaned_amount break # 处理余额 if entities["BALANCE"]: for amount in entities["BALANCE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: result["balance"] = cleaned_amount break return result except Exception as e: logger.error(f"收入实体提取失败: {str(e)}") raise def extract_flight_entities(self, text: str) -> Dict[str, Optional[str]]: """提取航班相关实体""" try: # 初始化结果字典 result = { "flight": None, # 航班号 "company": None, # 航空公司 "start": None, # 出发地 "end": None, # 目的地 "date": None, # 日期 "time": None, # 时间 "departure_time": None, # 起飞时间 "arrival_time": None, # 到达时间 "ticket_num": None, # 机票号码 "seat": None # 座位等信息 } # 使用NER模型提取实体 inputs = self.flight_tokenizer( text, return_tensors="pt", truncation=True, max_length=FlightNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.flight_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.flight_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.flight_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token else: if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 处理航班号格式 if result["flight"]: flight_no = result["flight"].upper() # 清理航班号,只保留字母和数字 flight_no = ''.join(c for c in flight_no if c.isalnum()) # 验证航班号格式 valid_pattern = re.compile(FlightNERConfig.FLIGHT_CONFIG['pattern']) if valid_pattern.match(flight_no): result["flight"] = flight_no else: # 尝试修复常见错误 if len(flight_no) >= FlightNERConfig.FLIGHT_CONFIG['min_length'] and flight_no[:2].isalpha() and flight_no[2:].isdigit(): result["flight"] = flight_no else: result["flight"] = None # 清理日期格式 if result["date"]: date_str = result["date"] # 保留数字和常见日期分隔符 date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.']) result["date"] = date_str # 清理时间格式 for time_field in ["time", "departure_time", "arrival_time"]: if result[time_field]: time_str = result[time_field] # 保留数字和常见时间分隔符 time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点']) result[time_field] = time_str # 处理机票号码 if result["ticket_num"]: ticket_num = result["ticket_num"] # 清理机票号码,只保留字母和数字 ticket_num = ''.join(c for c in ticket_num if c.isalnum()) result["ticket_num"] = ticket_num # 处理座位信息 if result["seat"]: seat_str = result["seat"] # 移除可能的额外空格和特殊字符 seat_str = seat_str.replace(" ", "").strip() result["seat"] = seat_str return result except Exception as e: logger.error(f"航班实体提取失败: {str(e)}") raise def extract_train_entities(self, text: str) -> Dict[str, Optional[str]]: """提取火车票相关实体""" try: # 初始化结果字典 result = { "company": None, # 12306 "trips": None, # 车次 "start": None, # 出发站 "end": None, # 到达站 "date": None, # 日期 "time": None, # 时间 "seat": None, # 座位等信息 "name": None # 用户姓名 } # 使用NER模型提取实体 inputs = self.train_tokenizer( text, return_tensors="pt", truncation=True, max_length=TrainNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.train_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.train_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.train_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token else: if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 处理公司名称,通常为12306 if result["company"]: company = result["company"].strip() # 如果文本中检测不到公司名称,但包含12306,则默认为12306 result["company"] = company elif "12306" in text: result["company"] = "12306" # 处理车次格式 if result["trips"]: trips_no = result["trips"].upper() # 清理车次号,只保留字母和数字 trips_no = ''.join(c for c in trips_no if c.isalnum() or c in ['/', '-']) # 验证车次格式 valid_patterns = [re.compile(pattern) for pattern in TrainNERConfig.TRIPS_CONFIG['patterns']] if any(pattern.match(trips_no) for pattern in valid_patterns): result["trips"] = trips_no else: # 尝试修复常见错误 if len(trips_no) >= TrainNERConfig.TRIPS_CONFIG['min_length'] and any(trips_no.startswith(t) for t in TrainNERConfig.TRIPS_CONFIG['train_types']): result["trips"] = trips_no elif trips_no.isdigit() and 1 <= len(trips_no) <= TrainNERConfig.TRIPS_CONFIG['max_length']: result["trips"] = trips_no else: result["trips"] = None # 清理日期格式 if result["date"]: date_str = result["date"] # 保留数字和常见日期分隔符 date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.']) result["date"] = date_str # 清理时间格式 if result["time"]: time_str = result["time"] # 保留数字和常见时间分隔符 time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点']) result["time"] = time_str # 处理座位信息 if result["seat"]: seat_str = result["seat"] # 移除可能的额外空格和特殊字符 seat_str = seat_str.replace(" ", "").strip() result["seat"] = seat_str # 处理乘客姓名 if result["name"]: name = result["name"].strip() # 移除可能的标点符号 name = ''.join(c for c in name if c.isalnum() or c in ['*', '·']) result["name"] = name return result except Exception as e: logger.error(f"火车票实体提取失败: {str(e)}") raise # 创建Flask应用 app = Flask(__name__) model_manager = ModelManager() @app.route("/health", methods=["GET"]) def health_check(): """健康检查接口""" return jsonify({"status": "healthy"}) @app.route("/process-sms", methods=["POST"]) def process_sms(): """处理短信的接口""" try: # 验证请求数据 if not request.is_json: raise BadRequest("请求必须是JSON格式") data = request.get_json() if "content" not in data: raise BadRequest("请求中必须包含'content'字段") text = data["content"] if not isinstance(text, str) or not text.strip(): raise BadRequest("短信内容不能为空") # 处理短信 category = model_manager.classify_sms(text) if category == "快递": details = model_manager.extract_entities(text) elif category == "还款": details = model_manager.extract_repayment_entities(text) elif category == "收入": details = model_manager.extract_income_entities(text) elif category == "航班": details = model_manager.extract_flight_entities(text) elif category == "火车票": # 添加火车票类别处理 details = model_manager.extract_train_entities(text) else: details = {} # 记录处理结果 logger.info(f"Successfully processed SMS: {text[:30]}...") return jsonify({ "status": "success", "data": { "category": category, "details": details } }) except BadRequest as e: logger.warning(f"Invalid request: {str(e)}") return jsonify({ "status": "error", "message": str(e) }), 400 except Exception as e: logger.error(f"Error processing SMS: {str(e)}") return jsonify({ "status": "error", "message": "服务器内部错误" }), 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=5000)