# -*- coding: utf-8 -*- import os import logging from typing import Dict, Optional, Tuple from flask import Flask, request, jsonify from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification import torch from werkzeug.exceptions import BadRequest from ner_config import NERConfig, RepaymentNERConfig, IncomeNERConfig, FlightNERConfig, TrainNERConfig import re # 配置日志 logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('app.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) class ModelManager: def __init__(self): self.classifier_path = "./models/classifier" self.ner_path = "./models/ner_model/best_model" self.repayment_path = "./models/repayment_model/best_model" self.income_path = "./models/income_model/best_model" # self.flight_path = "./models/flight_model/best_model" # self.train_path = "./models/train_model/best_model" # 添加火车票模型路径 # 检查模型文件 self._check_model_files() # 加载模型 self.classifier_tokenizer, self.classifier_model = self._load_classifier() self.ner_tokenizer, self.ner_model = self._load_ner() self.repayment_tokenizer, self.repayment_model = self._load_repayment() self.income_tokenizer, self.income_model = self._load_income() # self.flight_tokenizer, self.flight_model = self._load_flight() # self.train_tokenizer, self.train_model = self._load_train() # 加载火车票模型 # 将模型设置为评估模式 self.classifier_model.eval() self.ner_model.eval() self.repayment_model.eval() self.income_model.eval() # self.flight_model.eval() # self.train_model.eval() # 设置火车票模型为评估模式 def _check_model_files(self): """检查模型文件是否存在""" if not os.path.exists(self.classifier_path): raise RuntimeError("分类模型文件不存在,请先运行训练脚本") if not os.path.exists(self.ner_path): raise RuntimeError("NER模型文件不存在,请先运行训练脚本") if not os.path.exists(self.repayment_path): raise RuntimeError("还款模型文件不存在,请先运行训练脚本") if not os.path.exists(self.income_path): raise RuntimeError("收入模型文件不存在,请先运行训练脚本") # if not os.path.exists(self.flight_path): # raise RuntimeError("航班模型文件不存在,请先运行训练脚本") # if not os.path.exists(self.train_path): # raise RuntimeError("火车票模型文件不存在,请先运行训练脚本") def _load_classifier(self) -> Tuple[BertTokenizer, BertForSequenceClassification]: """加载分类模型""" try: tokenizer = BertTokenizer.from_pretrained(self.classifier_path) model = BertForSequenceClassification.from_pretrained(self.classifier_path) return tokenizer, model except Exception as e: logger.error(f"加载分类模型失败: {str(e)}") raise def _load_ner(self) -> Tuple[AutoTokenizer, AutoModelForTokenClassification]: """加载NER模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.ner_path) model = AutoModelForTokenClassification.from_pretrained(self.ner_path) return tokenizer, model except Exception as e: logger.error(f"加载NER模型失败: {str(e)}") raise def _load_repayment(self): """加载还款模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.repayment_path) model = AutoModelForTokenClassification.from_pretrained(self.repayment_path) return tokenizer, model except Exception as e: logger.error(f"加载还款模型失败: {str(e)}") raise def _load_income(self): """加载收入模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.income_path) model = AutoModelForTokenClassification.from_pretrained(self.income_path) return tokenizer, model except Exception as e: logger.error(f"加载收入模型失败: {str(e)}") raise def _load_flight(self): """加载航班模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.flight_path) model = AutoModelForTokenClassification.from_pretrained(self.flight_path) return tokenizer, model except Exception as e: logger.error(f"加载航班模型失败: {str(e)}") raise def _load_train(self): """加载火车票模型""" try: tokenizer = AutoTokenizer.from_pretrained(self.train_path) model = AutoModelForTokenClassification.from_pretrained(self.train_path) return tokenizer, model except Exception as e: logger.error(f"加载火车票模型失败: {str(e)}") raise def classify_sms(self, text: str) -> str: """对短信进行分类""" try: inputs = self.classifier_tokenizer( text, return_tensors="pt", truncation=True, max_length=64 ) with torch.no_grad(): outputs = self.classifier_model(**inputs) pred_id = outputs.logits.argmax().item() return self.classifier_model.config.id2label[pred_id] except Exception as e: logger.error(f"短信分类失败: {str(e)}") raise def extract_entities(self, text: str) -> Dict[str, Optional[str]]: """提取文本中的实体""" try: # 初始化结果字典 result = { "post": None, # 快递公司 "company": None, # 寄件公司 "address": None, # 地址 "pickup_code": None, # 取件码 "time": None # 添加时间字段 } # 第一阶段:直接从文本中提取取件码 pickup_code = self.extract_pickup_code_from_text(text) if pickup_code: result["pickup_code"] = pickup_code # 第二阶段:使用NER模型提取其他实体 inputs = self.ner_tokenizer( text, return_tensors="pt", truncation=True, max_length=64 ) with torch.no_grad(): outputs = self.ner_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.ner_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.ner_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None entity_start = None for i, (token, tag) in enumerate(zip(tokens, tags)): # 跳过取件码实体,因为我们已经单独处理了 if tag.startswith("B-") and tag[2:] != "PICKUP_CODE": # 保存之前的实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 开始新实体 current_entity = {"type": tag[2:], "text": token} entity_start = i elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"] and current_entity["type"] != "PICKUP_CODE": current_entity["text"] += token elif tag == "O" or tag.startswith("B-"): # 结束当前实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity and current_entity["type"] != "PICKUP_CODE": key = current_entity["type"].lower() result[key] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 如果第一阶段没有提取到取件码,使用NER模型的结果 if not result["pickup_code"]: # 重新解析一次,只提取取件码 current_entity = None for i, (token, tag) in enumerate(zip(tokens, tags)): if tag.startswith("B-") and tag[2:] == "PICKUP_CODE": current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == "PICKUP_CODE": current_entity["text"] += token elif (tag == "O" or tag.startswith("B-")) and current_entity: result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity and current_entity["type"] == "PICKUP_CODE": result["pickup_code"] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 后处理:清理和验证取件码 if result["pickup_code"]: # 清理取件码 code = result["pickup_code"] # 移除取件码后的额外文字 for word in ["的", "来", "到", "取", "件", "码"]: if word in code: code = code[:code.index(word)] # 只保留字母、数字和连字符 code = ''.join(c for c in code if c.isalnum() or c == "-") # 确保格式正确 parts = code.split("-") valid_parts = [] for part in parts: if part and any(c.isalnum() for c in part): valid_parts.append(part) if valid_parts: result["pickup_code"] = "-".join(valid_parts) else: result["pickup_code"] = None # 清理公司名称 if result["company"]: company = result["company"] invalid_words = ["包裹", "快递", "到"] for word in invalid_words: if company.endswith(word): company = company[:-len(word)] result["company"] = company.strip() # 清理地址 if result["address"]: address = result["address"] invalid_suffixes = [",请尽快取件", ",询", "请尽快取件"] for suffix in invalid_suffixes: if address.endswith(suffix): address = address[:-len(suffix)] result["address"] = address.strip() return result except Exception as e: logger.error(f"实体提取失败: {str(e)}") raise def extract_pickup_code_from_text(self, text: str) -> Optional[str]: """直接从文本提取取件码""" # 先尝试直接匹配完整的取件码格式 pickup_patterns = [ # 带有上下文的取件码模式(包括字母数字组合) r'凭\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})\s*(来|到)?', # 匹配"凭xx-xx-xxxx"格式 r'码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"码xx-xx-xxxx"格式 r'提货码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"提货码xx-xx-xxxx"格式 r'取件码\s*([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配"取件码xx-xx-xxxx"格式 # 分组提取模式,对有上下文的取件码 r'凭\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})\s*(来|到)?', # 匹配"凭xx-xx-xxxx" r'码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"码xx-xx-xxxx" r'提货码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"提货码xx-xx-xxxx" r'取件码\s*([A-Za-z0-9]{1,3})-(\d{1,2})-(\d{1,6})', # 匹配"取件码xx-xx-xxxx" # 独立的取件码模式 r'([A-Za-z0-9]{1,3}-\d{1,2}-\d{1,6})', # 匹配独立的xx-xx-xxxx格式,支持字母 r'(\d{1,2}-\d{1,2}-\d{4,6})', # 匹配独立的xx-xx-xxxx格式,纯数字 ] # 首先尝试整体匹配 for pattern in pickup_patterns[:4]: # 前4个是整体匹配模式 matches = re.findall(pattern, text) if matches: return matches[0] if isinstance(matches[0], str) else matches[0][0] # 然后尝试分组匹配 for pattern in pickup_patterns[4:8]: # 中间4个是分组匹配模式 matches = re.findall(pattern, text) if matches: # 分组匹配,第一部分可以是字母数字组合 match = matches[0] if len(match) >= 3: # 确保第2、3部分是数字 if match[1].isdigit() and match[2].isdigit(): return f"{match[0]}-{match[1]}-{match[2]}" # 最后尝试独立模式 for pattern in pickup_patterns[8:10]: # 最后2个是独立匹配模式 matches = re.findall(pattern, text) if matches: return matches[0] # 特殊处理包含"取件码"的文本 code_indicators = ["取件码", "提货码"] for indicator in code_indicators: if indicator in text: idx = text.find(indicator) # 检查紧跟着的文本 search_text = text[idx:idx+35] # 扩大搜索范围 # 尝试匹配"取件码A8-1-15"这样的格式 special_match = re.search(r'[码]\s*([A-Za-z0-9]+[-\s]+\d+[-\s]+\d+)', search_text) if special_match: # 规范化格式 code = special_match.group(1) # 将空格替换为连字符,确保格式一致 code = re.sub(r'\s+', '-', code) # 确保连字符格式正确 code = re.sub(r'-+', '-', code) return code # 特殊处理"凭"后面的数字序列 if "凭" in text: pickup_index = text.find("凭") if pickup_index != -1: # 在"凭"之后的25个字符内寻找取件码 search_text = text[pickup_index:pickup_index+35] # 尝试提取形如"凭A8-1-15"或"凭22-4-1111"的格式 alpha_num_match = re.search(r'凭\s*([A-Za-z0-9]+)[-\s]+(\d+)[-\s]+(\d+)', search_text) if alpha_num_match: return f"{alpha_num_match.group(1)}-{alpha_num_match.group(2)}-{alpha_num_match.group(3)}" # 提取所有字母数字序列 parts = re.findall(r'[A-Za-z0-9]+', search_text) if len(parts) >= 3: # 组合前三个部分 return f"{parts[0]}-{parts[1]}-{parts[2]}" # 查找形如"A8-1-15"的取件码 alpha_num_codes = re.findall(r'([A-Za-z]\d+)-(\d+)-(\d+)', text) if alpha_num_codes: match = alpha_num_codes[0] return f"{match[0]}-{match[1]}-{match[2]}" return None def extract_repayment_entities(self, text: str) -> Dict[str, Optional[str]]: """提取还款相关实体""" try: result = { "bank": None, # 还款主体 "type": None, # 还款类型 "amount": None, # 还款金额 "date": None, # 还款日期 "number": None, # 账号尾号 "min_amount": None # 最低还款金额 } inputs = self.repayment_tokenizer( text, return_tensors="pt", truncation=True, max_length=RepaymentNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.repayment_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.repayment_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.repayment_model.config.id2label[p] for p in predictions[0].numpy()] def clean_amount(amount_text: str, context: str) -> Optional[str]: """清理和标准化金额""" if not amount_text: return None # 尝试直接在上下文中使用正则表达式查找更完整的金额 # 如果在同一句话里有类似"应还金额5,800元"这样的模式 amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', context) if amount_match: return amount_match.group(1) # 直接返回匹配到的金额,保留原始格式 # 尝试查找最低还款金额 min_amount_match = re.search(r'最低还款([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', context) if min_amount_match and "MIN_CODE" in current_entity["type"]: return min_amount_match.group(1) # 直接返回匹配到的最低还款金额,保留原始格式 # 在上下文中查找完整金额 amount_index = context.find(amount_text) if amount_index != -1: # 扩大搜索范围,查找完整金额 search_start = max(0, amount_index - 10) search_end = min(len(context), amount_index + len(amount_text) + 10) search_text = context[search_start:search_end] # 使用正则表达式查找金额 amount_pattern = re.compile(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?') matches = list(amount_pattern.finditer(search_text)) if matches: # 选择最接近的匹配结果 best_match = None min_distance = float('inf') for match in matches: distance = abs(match.start() - (amount_index - search_start)) if distance < min_distance: min_distance = distance best_match = match.group(1) # 只取数字部分,保留逗号 if best_match: return best_match # 如果上述方法都没找到,则保留原始提取结果但验证其有效性 # 移除货币符号和无效词 for symbol in RepaymentNERConfig.AMOUNT_CONFIG['currency_symbols']: amount_text = amount_text.replace(symbol, '') for word in RepaymentNERConfig.AMOUNT_CONFIG['invalid_words']: amount_text = amount_text.replace(word, '') # 验证金额有效性 clean_amount = amount_text.replace(',', '') try: value = float(clean_amount) if value > 0: # 返回原始格式 return amount_text except ValueError: pass return None # 实体提取 current_entity = None entities = { "BANK": [], "TYPE": [], "PICKUP_CODE": [], "DATE": [], "NUMBER": [], "MIN_CODE": [] } for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = {"type": tag[2:], "text": token.replace("##", "")} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token.replace("##", "") else: if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = None if current_entity: entities[current_entity["type"]].append(current_entity["text"]) # 处理银行名称 if entities["BANK"]: bank_parts = [] seen = set() for bank in entities["BANK"]: bank = bank.strip() if bank and bank not in seen: bank_parts.append(bank) seen.add(bank) bank = "".join(bank_parts) if len(bank) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["BANK"]: result["bank"] = bank # 处理还款类型 if entities["TYPE"]: type_parts = [] seen = set() for type_ in entities["TYPE"]: type_ = type_.strip() if type_ and type_ not in seen: type_parts.append(type_) seen.add(type_) type_ = "".join(type_parts) if len(type_) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["TYPE"]: result["type"] = type_ # 处理账号尾号 if entities["NUMBER"]: number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit()) if number and len(number) <= RepaymentNERConfig.MAX_ENTITY_LENGTH["NUMBER"]: result["number"] = number # 处理日期 if entities["DATE"]: date = "".join(entities["DATE"]) date = ''.join(c for c in date if c.isdigit() or c in ['年', '月', '日', '-']) if date: result["date"] = date # 处理金额 # 先尝试使用正则表达式直接匹配金额 amount_match = re.search(r'(?:应还|还款)?金额([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text) if amount_match: amount = amount_match.group(1) # 保留原始格式(带逗号) # 验证金额有效性 try: value = float(amount.replace(',', '')) if value > 0: result["amount"] = amount except ValueError: pass # 如果正则没有匹配到,使用NER结果 if not result["amount"]: amount_candidates = [] # 从识别的实体中获取 for amount in entities["PICKUP_CODE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: try: value = float(cleaned_amount.replace(',', '')) amount_candidates.append((cleaned_amount, value)) except ValueError: continue # 如果还是没有找到,尝试从文本中提取 if not amount_candidates: # 使用更宽松的正则表达式匹配金额 amount_pattern = re.compile(r'([\d,]+\.?\d*)(?:元|块钱|块|万元|万)') matches = list(amount_pattern.finditer(text)) for match in matches: amount_text = match.group(1) # 获取数字部分,保留逗号 try: value = float(amount_text.replace(',', '')) amount_candidates.append((amount_text, value)) except ValueError: continue # 选择最大的有效金额 if amount_candidates: result["amount"] = max(amount_candidates, key=lambda x: x[1])[0] # 处理最低还款金额 # 先尝试使用正则表达式直接匹配最低还款金额 min_amount_match = re.search(r'最低还款([\d,]+\.?\d*)(?:元|块钱|块|万元|万)?', text) if min_amount_match: min_amount = min_amount_match.group(1) # 保留原始格式(带逗号) # 验证金额有效性 try: value = float(min_amount.replace(',', '')) if value > 0: result["min_amount"] = min_amount except ValueError: pass # 如果正则没有匹配到,使用NER结果 if not result["min_amount"] and entities["MIN_CODE"]: for amount in entities["MIN_CODE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: result["min_amount"] = cleaned_amount break return result except Exception as e: logger.error(f"还款实体提取失败: {str(e)}") raise def extract_income_entities(self, text: str) -> Dict[str, Optional[str]]: """提取收入相关实体""" try: result = { "bank": None, # 银行名称 "number": None, # 账号尾号 "datetime": None, # 交易时间 "amount": None, # 收入金额 "balance": None # 余额 } inputs = self.income_tokenizer( text, return_tensors="pt", truncation=True, max_length=IncomeNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.income_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.income_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.income_model.config.id2label[p] for p in predictions[0].numpy()] def clean_amount(amount_text: str, context: str) -> Optional[str]: """清理和标准化金额""" if not amount_text: return None # 在上下文中查找完整金额 amount_index = context.find(amount_text) if amount_index != -1: # 扩大搜索范围,查找完整金额 search_start = max(0, amount_index - 10) search_end = min(len(context), amount_index + len(amount_text) + 10) search_text = context[search_start:search_end] # 使用更精确的正则表达式查找金额模式,支持带逗号的金额 amount_pattern = re.compile(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)') matches = list(amount_pattern.finditer(search_text)) # 找到最接近且最长的完整金额 best_match = None min_distance = float('inf') max_length = 0 target_pos = amount_index - search_start for match in matches: match_pos = match.start() distance = abs(match_pos - target_pos) match_text = match.group(1) if len(match_text) > max_length or (len(match_text) == max_length and distance < min_distance): try: value = float(match_text) if value > 0: best_match = match_text min_distance = distance max_length = len(match_text) except ValueError: continue if best_match: amount_text = best_match # 移除货币符号和无效词 for symbol in IncomeNERConfig.AMOUNT_CONFIG['currency_symbols']: amount_text = amount_text.replace(symbol, '') for word in IncomeNERConfig.AMOUNT_CONFIG['invalid_words']: amount_text = amount_text.replace(word, '') # 处理金额中的逗号 amount_text = amount_text.replace(',', '') try: value = float(amount_text) if '.' in amount_text: decimal_places = len(amount_text.split('.')[1]) return f"{value:.{decimal_places}f}" return str(int(value)) except ValueError: pass return None # 实体提取 current_entity = None entities = { "BANK": [], "NUMBER": [], "DATATIME": [], "PICKUP_CODE": [], "BALANCE": [] } for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = {"type": tag[2:], "text": token.replace("##", "")} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token.replace("##", "") else: if current_entity: entities[current_entity["type"]].append(current_entity["text"]) current_entity = None if current_entity: entities[current_entity["type"]].append(current_entity["text"]) # 处理银行名称 if entities["BANK"]: bank_parts = [] seen = set() for bank in entities["BANK"]: bank = bank.strip() if bank and bank not in seen: bank_parts.append(bank) seen.add(bank) bank = "".join(bank_parts) if len(bank) <= IncomeNERConfig.MAX_ENTITY_LENGTH["BANK"]: result["bank"] = bank # 处理账号尾号 if entities["NUMBER"]: number = "".join(c for c in "".join(entities["NUMBER"]) if c.isdigit()) if number and len(number) <= IncomeNERConfig.MAX_ENTITY_LENGTH["NUMBER"]: result["number"] = number # 处理交易时间 if entities["DATATIME"]: datetime = "".join(entities["DATATIME"]) datetime = ''.join(c for c in datetime if c.isdigit() or c in ['年', '月', '日', '时', '分', ':', '-']) if datetime: result["datetime"] = datetime # 处理收入金额 amount_candidates = [] # 首先从识别的实体中获取 for amount in entities["PICKUP_CODE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: try: value = float(cleaned_amount) amount_candidates.append((cleaned_amount, value)) except ValueError: continue # 如果没有找到有效金额,直接从文本中尝试提取 if not amount_candidates: # 直接在整个文本中寻找金额模式 amount_pattern = re.compile(r'(\d{1,3}(?:,\d{3})*(?:\.\d{1,2})?|\d+(?:\.\d{1,2})?)') matches = list(amount_pattern.finditer(text)) for match in matches: amount_text = match.group(1) try: value = float(amount_text.replace(',', '')) amount_candidates.append((amount_text, value)) except ValueError: continue # 选择最合适的有效金额 if amount_candidates: result["amount"] = max(amount_candidates, key=lambda x: x[1])[0] # 处理余额 if entities["BALANCE"]: for amount in entities["BALANCE"]: cleaned_amount = clean_amount(amount, text) if cleaned_amount: result["balance"] = cleaned_amount break return result except Exception as e: logger.error(f"收入实体提取失败: {str(e)}") raise def extract_flight_entities(self, text: str) -> Dict[str, Optional[str]]: """提取航班相关实体""" try: # 初始化结果字典 result = { "flight": None, # 航班号 "company": None, # 航空公司 "start": None, # 出发地 "end": None, # 目的地 "date": None, # 日期 "time": None, # 时间 "departure_time": None, # 起飞时间 "arrival_time": None, # 到达时间 "ticket_num": None, # 机票号码 "seat": None # 座位等信息 } # 使用NER模型提取实体 inputs = self.flight_tokenizer( text, return_tensors="pt", truncation=True, max_length=FlightNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.flight_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.flight_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.flight_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token else: if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 处理航班号格式 if result["flight"]: flight_no = result["flight"].upper() # 清理航班号,只保留字母和数字 flight_no = ''.join(c for c in flight_no if c.isalnum()) # 验证航班号格式 valid_pattern = re.compile(FlightNERConfig.FLIGHT_CONFIG['pattern']) if valid_pattern.match(flight_no): result["flight"] = flight_no else: # 尝试修复常见错误 if len(flight_no) >= FlightNERConfig.FLIGHT_CONFIG['min_length'] and flight_no[:2].isalpha() and flight_no[2:].isdigit(): result["flight"] = flight_no else: result["flight"] = None # 清理日期格式 if result["date"]: date_str = result["date"] # 保留数字和常见日期分隔符 date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.']) result["date"] = date_str # 清理时间格式 for time_field in ["time", "departure_time", "arrival_time"]: if result[time_field]: time_str = result[time_field] # 保留数字和常见时间分隔符 time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点']) result[time_field] = time_str # 处理机票号码 if result["ticket_num"]: ticket_num = result["ticket_num"] # 清理机票号码,只保留字母和数字 ticket_num = ''.join(c for c in ticket_num if c.isalnum()) result["ticket_num"] = ticket_num # 处理座位信息 if result["seat"]: seat_str = result["seat"] # 移除可能的额外空格和特殊字符 seat_str = seat_str.replace(" ", "").strip() result["seat"] = seat_str return result except Exception as e: logger.error(f"航班实体提取失败: {str(e)}") raise def extract_train_entities(self, text: str) -> Dict[str, Optional[str]]: """提取火车票相关实体""" try: # 初始化结果字典 result = { "company": None, # 12306 "trips": None, # 车次 "start": None, # 出发站 "end": None, # 到达站 "date": None, # 日期 "time": None, # 时间 "seat": None, # 座位等信息 "name": None # 用户姓名 } # 使用NER模型提取实体 inputs = self.train_tokenizer( text, return_tensors="pt", truncation=True, max_length=TrainNERConfig.MAX_LENGTH ) with torch.no_grad(): outputs = self.train_model(**inputs) predictions = torch.argmax(outputs.logits, dim=2) tokens = self.train_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) tags = [self.train_model.config.id2label[p] for p in predictions[0].numpy()] # 解析实体 current_entity = None for token, tag in zip(tokens, tags): if tag.startswith("B-"): if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = {"type": tag[2:], "text": token} elif tag.startswith("I-") and current_entity and tag[2:] == current_entity["type"]: current_entity["text"] += token else: if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() current_entity = None # 处理最后一个实体 if current_entity: entity_type = current_entity["type"].lower() result[entity_type] = current_entity["text"].replace("[UNK]", "").replace("##", "").strip() # 处理公司名称,通常为12306 if result["company"]: company = result["company"].strip() # 如果文本中检测不到公司名称,但包含12306,则默认为12306 result["company"] = company elif "12306" in text: result["company"] = "12306" # 处理车次格式 if result["trips"]: trips_no = result["trips"].upper() # 清理车次号,只保留字母和数字 trips_no = ''.join(c for c in trips_no if c.isalnum() or c in ['/', '-']) # 验证车次格式 valid_patterns = [re.compile(pattern) for pattern in TrainNERConfig.TRIPS_CONFIG['patterns']] if any(pattern.match(trips_no) for pattern in valid_patterns): result["trips"] = trips_no else: # 尝试修复常见错误 if len(trips_no) >= TrainNERConfig.TRIPS_CONFIG['min_length'] and any(trips_no.startswith(t) for t in TrainNERConfig.TRIPS_CONFIG['train_types']): result["trips"] = trips_no elif trips_no.isdigit() and 1 <= len(trips_no) <= TrainNERConfig.TRIPS_CONFIG['max_length']: result["trips"] = trips_no else: result["trips"] = None # 清理日期格式 if result["date"]: date_str = result["date"] # 保留数字和常见日期分隔符 date_str = ''.join(c for c in date_str if c.isdigit() or c in ['年', '月', '日', '-', '/', '.']) result["date"] = date_str # 清理时间格式 if result["time"]: time_str = result["time"] # 保留数字和常见时间分隔符 time_str = ''.join(c for c in time_str if c.isdigit() or c in [':', '时', '分', '点']) result["time"] = time_str # 处理座位信息 if result["seat"]: seat_str = result["seat"] # 移除可能的额外空格和特殊字符 seat_str = seat_str.replace(" ", "").strip() result["seat"] = seat_str # 处理乘客姓名 if result["name"]: name = result["name"].strip() # 移除可能的标点符号 name = ''.join(c for c in name if c.isalnum() or c in ['*', '·']) result["name"] = name return result except Exception as e: logger.error(f"火车票实体提取失败: {str(e)}") raise # 创建Flask应用 app = Flask(__name__) model_manager = ModelManager() @app.route("/health", methods=["GET"]) def health_check(): """健康检查接口""" return jsonify({"status": "healthy"}) @app.route("/process-sms", methods=["POST"]) def process_sms(): """处理短信的接口""" try: # 验证请求数据 if not request.is_json: raise BadRequest("请求必须是JSON格式") data = request.get_json() if "content" not in data: raise BadRequest("请求中必须包含'content'字段") text = data["content"] if not isinstance(text, str) or not text.strip(): raise BadRequest("短信内容不能为空") # 处理短信 category = model_manager.classify_sms(text) if category == "快递": details = model_manager.extract_entities(text) elif category == "还款": details = model_manager.extract_repayment_entities(text) elif category == "收入": details = model_manager.extract_income_entities(text) elif category == "航班": details = model_manager.extract_flight_entities(text) elif category == "火车票": # 添加火车票类别处理 details = model_manager.extract_train_entities(text) else: details = {} # 记录处理结果 logger.info(f"Successfully processed SMS: {text[:30]}...") return jsonify({ "status": "success", "data": { "category": category, "details": details } }) except BadRequest as e: logger.warning(f"Invalid request: {str(e)}") return jsonify({ "status": "error", "message": str(e) }), 400 except Exception as e: logger.error(f"Error processing SMS: {str(e)}") return jsonify({ "status": "error", "message": "服务器内部错误" }), 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=5000)